145 research outputs found

    Provenance of Ordovician and Devonian sandstones from southern Peru and northern Bolivia - U-Pb and Lu-Hf isotope evidence of detrital zircons and its implications for the geodynamic evolution of the Western Gondwana margin (14° - 17° S)

    Get PDF
    In an attempt to trace the provenance of sedimentary detritus and to gain information on the crustal evolution of the Early Paleozoic western Gondwana margin (14°-17°S) we applied a combined in situ U-Pb and Lu-Hf LA-ICP-MS isotope analysis on detrital zircon from 12 Ordovician and Devonian sandstones in southern Peru and northern Bolivia. The sandstones are exposed in the Eastern Cordillera, the Altiplano and the Coastal Cordillera. The sedimentary basins are part of the Peru-Bolivia trough. Few intrusive and extrusive Early Paleozoic rocks indicate that the Ordovician basins developed in a back-arc position, with the arc on the Arequipa Massif in the west and the Amazonian craton in the east. This plate-tectonic setting appears to have changed into a passive margin in the Early Devonian. The U-Pb zircon age distribution of the Ordovician sandstones from the Eastern Cordillera has the most distinctive peak between 0.7 and 0.5 Ga (Brazilian interval). Contrastingly, the most prominent U-Pb zircon age peak of the Ordovician sandstones from the Altiplano is at 1.2-0.9 Ga (Grenvillian interval) with a smaller peak at 1.85-1.7 Ga. The Devonian sandstones from the same locality on the Altiplano contain zircons with a major age peak at 0.5-0.4 Ga (Famatinian interval). Smaller U-Pb age peaks can be connected to the Brazilian, Grenvillian and Transamazonian (2.2-1.8 Ga) intervals. Zircons of the Devonian sandstones from the Coastal Cordillera have a similar age distribution but the Grenvillian ages, in one case also the Transamazonian ages are significantly more pronounced than the Brazilian ages. Zircons formed during the Brazilian interval could have been derived from various eastern sources on the Amazonian craton, those with Grenvillian ages were derived either from the Sunsas belt to the east or from the Arequipa Massif to the west of the sedimentary basin. Zircons related to the Famatinan event most probably originated in the Arequipa Massif, the closest place where respective magmatic arc rocks were available. Thus, the Ordovician sandstones of the Eastern Cordillera and the Altiplano had an eastern source, while the Altiplano locality was fed from a very limited source area, probably the Sunsas belt. The Devonian siliciclastic strata instead were mainly influenced by the Arequipa Massif. Minor influences of eastern sources are documented by the presence of Brazilian zircon ages. The in situ Lu-Hf isotope signature provides information about crustal recycling. Together with the U-Pb zircon ages, crustal evolution paths can be reconstructed. εHf(t) values of the analysed zircons spread between –20 and +12. Zircons with a very juvenile signatures (less than 5 εHf-units below the respective depleted mantle composition) we detected only in the interval between 1.5 and 0.9 Ga. Hence, of the Brazilian and Famatinian events we only find zircons derived from an evolved crust. A striking feature is the common Hf model ages (c.1.5-1.2 Ga) of zircons formed during the Grenvillian, Brazilian and Famatinian orogenies. This indicates that Famatinian-aged crystalline rocks of the Arequipa Massif and the Brazilianaged crystalline rocks of the Amazonian craton have a similar crustal origin

    The missing link of Rodinia break up in western South America: A petrographical, geochemical, and zircon Pb-Hf isotope study of the volcanosedimentary Chilla beds (Altiplano, Bolivia)

    Get PDF
    The assembly of Rodinia involved the collision of eastern Laurentia with southwestern Amazonia at ca. 1 Ga. The tectonostratigraphic record of the central Andes records a gap of ∼300 m.y. between 1000 Ma and 700 Ma, i.e., from the beginning of the Neoproterozoic Era to the youngest part of the Cryogenian Period. This gap encompasses the time of final assembly and breakup of the Rodinia supercontinent in this region. We present new petrographic and whole-rock geochemical data and U-Pb ages combined with Hf isotope data of detrital zircons from the volcanosedimentary Chilla beds exposed on the Altiplano southwest of La Paz, Bolivia. The presence of basalt to andesite lavas and tuffs of continental tholeiitic affinity provides evidence of a rift setting for the volcanics and, by implication, the associated sedimentary rocks. U-Pb ages of detrital zircons (n = 124) from immature, quartz-intermediate sandstones have a limited range between 1737 and 925 Ma. A youngest age cluster (n = 3) defines the maximum depositional age of 925 ± 12 Ma. This is considered to coincide with the age of deposition because Cryogenian and younger ages so typical of Phanerozoic units of this region are absent from the data. The zircon age distribution shows maxima between 1300 and 1200 Ma (37% of all ages), the time of the Rondônia–San Ignacio and early Sunsás (Grenville) orogenies in southwestern Amazonia. A provenance mixing model considering the Chilla beds, Paleozoic Andean units, and data from eastern Laurentia Grenville sources shows that >90% of the clastic input was likely derived from Amazonia. This is also borne out by multidimensional scaling (MDS) analysis of the data. We also applied MDS analysis to combinations of U-Pb age and Hf isotope data, namely εHf(t) and 176Hf/177Hf values, and demonstrate again a very close affinity of the Chilla beds detritus to Amazonian sources. We conclude that the Chilla beds represent the first and hitherto only evidence of Rodinia breakup in Tonian time in Andean South America.publishedVersio

    A mineral and cumulate perspective to magma differentiation at Nisyros volcano, Aegean arc

    Get PDF
    Lavas and pyroclastic products of Nisyros volcano (Aegean arc, Greece) host a wide variety of phenocryst and cumulate assemblages that offer a unique window into the earliest stages of magma differentiation. This study presents a detailed petrographic study of lavas, enclaves and cumulates spanning the entire volcanic history of Nisyros to elucidate at which levels in the crust magmas stall and differentiate. We present a new division for the volcanic products into two suites based on field occurrence and petrographic features: a low-porphyricity andesite and a high-porphyricity (rhyo)dacite (HPRD) suite. Cumulate fragments are exclusively found in the HPRD suite and are predominantly derived from upper crustal reservoirs where they crystallised under hydrous conditions from melts that underwent prior differentiation. Rarer cumulate fragments range from (amphibole-)wehrlites to plagioclase-hornblendites and these appear to be derived from the lower crust (0.5–0.8 GPa). The suppressed stability of plagioclase and early saturation of amphibole in these cumulates are indicative of high-pressure crystallisation from primitive hydrous melts (≥ 3 wt% H2O). Clinopyroxene in these cumulates has Al2O3 contents up to 9 wt% due to the absence of crystallising plagioclase, and is subsequently consumed in a peritectic reaction to form primitive, Al-rich amphibole (Mg# > 73, 12–15 wt% Al2O3). The composition of these peritectic amphiboles is distinct from trace element-enriched interstitial amphibole in shallower cumulates. Phenocryst compositions and assemblages in both suites differ markedly from the cumulates. Phenocrysts, therefore, reflect shallow crystallisation and do not record magma differentiation in the deep arc crust

    Formation of Paleo- to Meso-Archean continental crust in the western Dharwar Craton, India: Constraints from U Pb zircon ages and Hf-Pb-Sr isotopes of granitoids and sedimentary rocks

    Get PDF
    The combination of U–Pb zircon ages with Hf-Sr-Pb isotopes of different intrusive and extrusive felsic and sedimentary rocks provides constraints on the petrogenetic evolution of the continental crust in the western Dharwar Craton, India. The oldest detrital zircon preserved formed at ∼3.6 Ga and represents a relic of the oldest felsic crustal material in the region. The dominant granitoid units of the western Dharwar Craton contain zircon grains with magmatic ages between 3.4 Ga and 3.0 Ga that indicate the formation of major felsic continental crust during this interval. Trace element abundances of the granitoids indicate that the oldest members of the intermediate to felsic suite derived by partial melting of mafic material at ∼3.6–3.4 Ga. The initial bulk rock Hf isotope compositions of these granitoids are consistent with their formation by melting of even older mafic material that was slightly enriched relative to the depleted mantle composition. This mafic and slightly enriched material formed by mantle melting at ∼ < 3.8 Ga. The Hf isotope compositions of individual zircon grains, obtained by two different analytical techniques (in-situ and complete dissolution followed by chromatographic separation) give evidence for the presence of such older mafic material (<3.8 Ga) that formed the immediate precursor of their granitoid host rocks. Such a mafic source for the granitoids is consistent with Pb–Sr isotope systematics of these that shows no indication of Eoarchean enriched/evolved material in the western Dharwar Craton. The mafic source material of the granitoids thus represents an intermediate stage of crust formation that started after 3.8 Ga with the formation of mafic crust by mantle melting. The combined geochronological and isotopic constraints suggest that the Mesoarchean felsic crust of the Dharwar Craton formed by differentiation of melts derived from an amphibolite/eclogite source rock and included increasing contributions of reprocessed crustal material with time from ∼3.6 to 3.0 Ga. The major interval of growth of felsic continental crust was from 3.4 to 3.0 Ga. The younger generation of granitoids formed mostly by reworking of older intermediate to felsic crust. These different felsic magmatic bodies with distinct petrogeneses and sources, that include the depleted mantle, older mafic crust and the evolved continental crust, became essential elements of the stable continental crust of the western Dharwar Craton, the majority of which was generated from 3.4 to 3.0 Ga.ISSN:0009-2541ISSN:1872-683

    Igneous seismic geomorphology of buried lava fields and coastal escarpments on the Vøring volcanic rifted margin

    Get PDF
    Voluminous igneous complexes are commonly present in sedimentary basins on volcanic rifted margins, and they represent a challenge for petroleum explorationists. A 2500 km2 industry-standard 3D seismic cube has recently been acquired on the Vøring Marginal High offshore mid-Norway to image subbasalt sedimentary rocks. This cube also provides a unique opportunity for imaging top- and intrabasalt structures. Detailed seismic geomorphological interpretation of the top-basalt horizon, locally calibrated with high-resolution P-Cable wide-azimuth data, reveals new insight into the late-stage development of the volcanic flow fields and the kilometer-high coastal Vøring Escarpment. Subaerial lava flows with compressional ridges and inflated lava lobes cover the marginal high, with a comparable structure and size to modern subaerial lava fields. Pitted surfaces, likely formed by lava emplaced in a wet environment, are present in the western part of the study area near the continent-ocean boundary. The prominent Vøring Escarpment formed when eastward-flowing lava reached the coastline. The escarpment morphology is influenced by preexisting structural highs, and these highs are locally bypassed by the lava. Volcanogenic debris flows are well-imaged on the escarpment horizon, along with large-scale large slump blocks. Similar features exist in active volcanic environments, e.g., on the south coast of Hawaii. Numerous postvolcanic extensional faults and incised channels cut into the marginal high and the escarpment, and we found that the area was geologically active after the volcanism ceased. In summary, igneous seismic geomorphology and seismic volcanostratigraphy are two very powerful methods to understand the volcanic deposits and development of rifted margins. Our study demonstrates great promise for further understanding the igneous development of offshore basins as more high-quality 3D seismic data become available

    Synthesis of trace element bearing single crystals of Chlor-Apatite (Ca5(PO4)3Cl) using the flux growth method

    Full text link
    We present a new strategy on how to synthesize trace-element bearing (REE, Sr) chlorapatites Ca5(PO4)3Cl using the flux growth method. Synthetic apatites were up to several mm long, light blue in colour. The apatites were characterized using XRD, electron microprobe and laser ablation ICP-MS (LA-ICPMS) techniques and contained several hundred μg/g La, Ce, Pr, Sm, Gd and Lu and about 1700 μg/g Sr. The analyses indicate that apatites were homogenous (within the uncertainties) for major and trace elements
    • …
    corecore