139 research outputs found
Bypassing the proline/thiazoline requirement of the macrocyclase PatG
Peer reviewedPublisher PD
In-Vivo Biodistribution and Safety of 99mTc-LLP2A-HYNIC in Canine Non-Hodgkin Lymphoma
Theranostic agents are critical for improving the diagnosis and treatment of non-Hodgkin Lymphoma (NHL). The peptidomimetic LLP2A is a novel peptide receptor radiotherapy candidate for treating NHL that expresses the activated α4β1 integrin. Tumor-bearing dogs are an excellent model of human NHL with similar clinical characteristics, behavior, and compressed clinical course. Canine in vivo imaging studies will provide valuable biodistribution and affinity information that reflects a diverse clinical population of lymphoma. This may also help to determine potential dose-limiting radiotoxicity to organs in human clinical trials. To validate this construct in a naturally occurring model of NHL, we performed in-vivo molecular targeted imaging and biodistribution in 3 normal dogs and 5 NHL bearing dogs. 99mTc-LLP2A-HYNIC-PEG and 99mTc-LLP2A-HYNIC were successfully synthesized and had very good labeling efficiency and radiochemical purity. 99mTc-LLP2A-HYNIC and 99mTc-LLP2A-HYNIC-PEG had biodistribution in keeping with their molecular size, with 99mTc-LLP2A-HYNIC-PEG remaining longer in the circulation, having higher tissue uptake, and having more activity in the liver compared to 99mTc-LLP2A-HYNIC. 99mTc-LLP2A-HYNIC was mainly eliminated through the kidneys with some residual activity. Radioactivity was reduced to near-background levels at 6 hours after injection. In NHL dogs, tumor showed moderately increased activity over background, with tumor activity in B-cell lymphoma dogs decreasing after chemotherapy. This compound is promising in the development of targeted drug-delivery radiopharmaceuticals and may contribute to translational work in people affected by non-Hodgkin lymphoma
Self-assisted Amoeboid Navigation in Complex Environments
Background: Living cells of many types need to move in response to external
stimuli in order to accomplish their functional tasks; these tasks range from
wound healing to immune response to fertilization. While the directional motion
is typically dictated by an external signal, the actual motility is also
restricted by physical constraints, such as the presence of other cells and the
extracellular matrix. The ability to successfully navigate in the presence of
obstacles is not only essential for organisms, but might prove relevant in the
study of autonomous robotic motion.
Methodology/principal findings: We study a computational model of amoeboid
chemotactic navigation under differing conditions, from motion in an
obstacle-free environment to navigation between obstacles and finally to moving
in a maze. We use the maze as a simple stand-in for a motion task with severe
constraints, as might be expected in dense extracellular matrix. Whereas agents
using simple chemotaxis can successfully navigate around small obstacles, the
presence of large barriers can often lead to agent trapping. We further show
that employing a simple memory mechanism, namely secretion of a repulsive
chemical by the agent, helps the agent escape from such trapping.
Conclusions/significance: Our main conclusion is that cells employing simple
chemotactic strategies will often be unable to navigate through maze-like
geometries, but a simple chemical marker mechanism (which we refer to as
"self-assistance") significantly improves success rates. This realization
provides important insights into mechanisms that might be employed by real
cells migrating in complex environments as well as clues for the design of
robotic navigation strategies. The results can be extended to more complicated
multi-cellular systems and can be used in the study of mammalian cell migration
and cancer metastasis
The apoptosis-inducing activity towards leukemia and lymphoma cells in a cyanobacterial culture collection is not associated with mouse bioassay toxicity
Cyanobacteria (83 strains and seven natural populations) were screened for content of apoptosis (cell death)-inducing activity towards neoplastic cells of the immune (jurkat acute T-cell lymphoma) and hematopoetic (acute myelogenic leukemia) lineage. Apoptogenic activity was frequent, even in strains cultured for decades, and was unrelated to whether the cyanobacteria had been collected from polar, temperate, or tropic environments. The activity was more abundant in the genera Anabaena and Microcystis compared to Nostoc, Phormidium, Planktothrix, and Pseudanabaena. Whereas the T-cell lymphoma apoptogens were frequent in organic extracts, the cell death-inducing activity towards leukemia cells resided mainly in aqueous extracts. The cyanobacteria were from a culture collection established for public health purposes to detect toxic cyanobacterial blooms, and 54 of them were tested for toxicity by the mouse bioassay. We found no correlation between the apoptogenic activity in the cyanobacterial isolates with their content of microcystin, nor with their ability to elicit a positive standard mouse bioassay. Several strains produced more than one apoptogen, differing in biophysical or biological activity. In fact, two strains contained microcystin in addition to one apoptogen specific for the AML cells, and one apoptogen specific for the T-cell lymphoma. This study shows the potential of cyanobacterial culture collections as libraries for bioactive compounds, since strains kept in cultures for decades produced apoptogens unrelated to the mouse bioassay detectable bloom-associated toxins
Renal cancer and pneumothorax risk in Birt-Hogg-Dubé syndrome; an analysis of 115 FLCN mutation carriers from 35 BHD families
Background: Birt-Hogg-Dubé (BHD) syndrome is an autosomal dominant condition caused by germline FLCN mutations, and characterised by fibrofolliculomas, pneumothorax and renal cancer. The renal cancer risk, cancer phenotype and pneumothorax risk of BHD have not yet been fully clarified. The main focus of this study was to assess the risk of renal cancer, the histological subtypes of renal tumours and the pneumothorax risk in BHD. Methods: In this study we present the clinical data of 115 FLCN mutation carriers from 35 BHD families. Results: Among 14 FLCN mutation carriers who developed renal cancer 7 were <50 years at onset and/or had multifocal/bilateral tumours. Five symptomatic patients developed metastatic disease. Two early-stage cases were diagnosed by surveillance. The majority of tumours showed characteristics of both eosinophilic variants of clear cell and chromophobe carcinoma. The estimated penetrance for renal cancer and pneumothorax was 16% (95% minimal confidence interval: 6-26%) and 29% (95% minimal confidence interval: 9-49%) at 70 years of age, respectively. The most frequent diagnosis in families without identified FLCN mutations was familial multiple discoid fibromas. Conclusion: We confirmed a high yield of FLCN mutations in clinically defined BHD families, we found a substantially increased lifetime risk of renal cancer of 16% for FLCN mutation carriers. The tumours were metastatic in 5 out of 14 patients and tumour histology was not specific for BHD. We found a pneumothorax risk of 29%. We discuss the implications of our findings for diagnosis and management of BHD
Ribosomally synthesized and post-translationally modified peptide natural products: Overview and recommendations for a universal nomenclature
Covering: 1988 to 2012 This review presents recommended nomenclature for the biosynthesis of ribosomally synthesized and post-translationally modified peptides (RiPPs), a rapidly growing class of natural products. The current knowledge regarding the biosynthesis of the >20 distinct compound classes is also reviewed, and commonalities are discussed
A guide to the crystallographic analysis of icosahedral viruses
Determining the structure of an icosahedral virus crystal by X-ray diffraction follows very much the same course as conventional protein crystallography. The major differences arise from the relatively large sizes of the particles, which significantly affect the data collection process, data processing and management, and later, the refinement of a model. Most of the other differences are due to the high 5 3 2 point group symmetry of icosahedral viruses. This alters dramatically the means by which initial phases are obtained by molecular substitution, extended to higher resolution by electron density averaging and density modification, and the refinement of the structure in the light of high non-crystallographic symmetry. In this review, we attempt to lead the investigator through the various steps involved in solving the structure of a virus crystal. These steps include the purification of viruses, their crystallization, the recording of X-ray diffraction data, and its reduction to structure amplitudes. It further addresses the problems attending phase determination and ultimately the refinement of a model. Finally, we describe the unique properties of virus crystals and the factors that influence their physical and diffraction properties
- …