22 research outputs found

    An Assessment of the Needs of Georgian Secondary Agricultural Educators

    Get PDF
    This purpose of this study was to determine the perception of secondary educators involved in Future Farmers of Georgia (FFG) schools throughout the country of Georgia concerning their needs for furthering the existing framework of agricultural education. The researchers used a modified focus group method to meet the aformentioned purpose of this study. The population for this study consisted of the high school agricultural education teachers and their administrators who were participating in the FFG Program (n=14). Qualitative data collected from the probe (first round) was used to generate a series of 46 statements. In the second round participants were asked to rank the 46 statements using a five point Likert-type scale. Due to events in the Former Republic of Georgia, the third round could not be conducted. Therefore, the researchers concluded that the round two data would be used to meet the purpose and objectives of this study. Participants strongly agreed that the FFG program strengthens leadership skills among their students and students have become more involved in practical/labor activities. They also agreed that gaining knowledge and skills from the FFG program will improve the future development of agricultural education in the country. Participants also strongly agreed that improvement of schools’ materials, technology, and development are necessary to improve the FFG program. Participants were either neutral or agreed with the following statements: due to the FFG program, academic performance has been increased among students; and students have greater academic success in history and geography

    Tectonomagmatic Evolution of Southwestern Laurentia: Insights from Zircon U-Pb Geochronology and Hafnium Isotopic Composition of the Red Bluff Granite Suite, West Texas, USA

    Get PDF
    We provide laser ablation–multicollector–inductively coupled plasma–mass spectrometry (LA-MC-ICP-MS) and high-precision chemical abrasion–isotope dilution–thermal ionization mass spectrometry (CA-ID-TIMS) U-Pb ages and Hf isotopic compositions of zircons from the Red Bluff Granite Suite and mafic dikes in the Franklin Mountains of El Paso, Texas, USA. Granitoids exposed in the Franklin Mountains were previously divided into five magmatic stages based on cross-cutting relationships. Major and trace element compositions showed that these granitoids are ferroan, alkaline, and A2 type. Homogeneity in the whole-rock geochemistry suggests that the granite stages are genetically related and share similar petrogenetic histories. Weighted mean zircon 206Pb/238U dates from the older magmatic stage 1 alkali-feldspar quartz syenite and stage 2 alkali-feldspar granite are 1112.36 ± 0.35 and 1112.46 ± 0.37 Ma, respectively. The weighted mean ΔHf(t) values varying from +5.3 to +7.2 are similar to those of other regional ca. 1.1 Ga magmatic rocks throughout southwestern Laurentia. Geochemical characteristics, petrological modeling, and enriched Hf isotopic composition suggest fractional crystallization of a basaltic magma that was produced by melting of an enriched mantle reservoir. However, zircon inheritance ages of ca. 1.3 Ga and 1.26–1.15 Ga are consistent with a minor contribution from felsic crustal basement. Our data and regional geology are consistent with a post-collisional slab break-off that facilitated asthenospheric upwelling and partial melting of the enriched mantle, possibly subcontinental lithospheric mantle, extending from Llano Uplift, Texas, in the southeast to California to the northwest. Magma thus generated upon differentiation produced ferroan and A-type granitoids

    CropPol: a dynamic, open and global database on crop pollination

    Get PDF
    Seventy five percent of the world's food crops benefit from insect pollination. Hence, there has been increased interest in how global change drivers impact this critical ecosystem service. Because standardized data on crop pollination are rarely available, we are limited in our capacity to understand the variation in pollination benefits to crop yield, as well as to anticipate changes in this service, develop predictions, and inform management actions. Here, we present CropPol, a dynamic, open and global database on crop pollination. It contains measurements recorded from 202 crop studies, covering 3,394 field observations, 2,552 yield measurements (i.e. berry weight, number of fruits and kg per hectare, among others), and 47,752 insect records from 48 commercial crops distributed around the globe. CropPol comprises 32 of the 87 leading global crops and commodities that are pollinator dependent. Malus domestica is the most represented crop (32 studies), followed by Brassica napus (22 studies), Vaccinium corymbosum (13 studies), and Citrullus lanatus (12 studies). The most abundant pollinator guilds recorded are honey bees (34.22% counts), bumblebees (19.19%), flies other than Syrphidae and Bombyliidae (13.18%), other wild bees (13.13%), beetles (10.97%), Syrphidae (4.87%), and Bombyliidae (0.05%). Locations comprise 34 countries distributed among Europe (76 studies), Northern America (60), Latin America and the Caribbean (29), Asia (20), Oceania (10), and Africa (7). Sampling spans three decades and is concentrated on 2001-05 (21 studies), 2006-10 (40), 2011-15 (88), and 2016-20 (50). This is the most comprehensive open global data set on measurements of crop flower visitors, crop pollinators and pollination to date, and we encourage researchers to add more datasets to this database in the future. This data set is released for non-commercial use only. Credits should be given to this paper (i.e., proper citation), and the products generated with this database should be shared under the same license terms (CC BY-NC-SA). This article is protected by copyright. All rights reserved

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Surface uplift above the Jemez mantle anomaly in the past 4 Ma based on 40Ar/39Ar dated paleoprofiles of the Rio San Jose, New Mexico, USA

    No full text
    We combine 15 new 40Ar/39Ar ages with existing age constraints of basalts to investigate the incision and denudation history of the ~150-km-long Rio San Jose (RSJ) of west-central New Mexico (USA) over the past 4 Ma. Temporal and spatial scales of differential incision may help evaluate the relative importance of neotectonic, geomorphic and climatic forcings. The RSJ is a southeast-flowing river that orthogonally crosses the northeast-trending Jemez volcanic lineament, which is underlain by a zone of low-velocity mantle. Preserved basalt flows along the length of the river at different elevations that directly overlie river gravels are used to construct paleoprofiles of the RSJ and give insight into the differential incision history, which can test the hypothesis that epeirogenic uplift associated with the Jemez lineament influenced differential incision of the RSJ. Observations include (1) a northeast-trending graben along the central reach of the RSJ (El Malpais valley graben) which is parallel to the Jemez lineament, (2) the present-day east tilt of the originally west-flowing 3.7 Ma Mesa Lucero flow along the eastern edge of the Jemez lineament, and (3) modern profile convexities that are colocated with ca. 3 Ma paleoprofile convexities and are centered above the Jemez lineament. The arched ca. 3 Ma paleoprofile defined by the pre–Mount Taylor strath has greater convexity than younger profiles, suggesting neotectonic bowing of ~135 m (~50 m/Ma) in this reach over the past ~3 Ma relative to areas off axis of the Jemez lineament, in spite of graben subsidence and aggradational fill in this reach exceeding 100 m. Differential incision of the 184 ka Suwanee flow at the edge of the Colorado Plateau may be attributable to base-level fall in downstream reaches of the RSJ and/or headwater uplift, and more erosive climate in the past several hundred thousand years. However, these observations, when considered together, cannot be explained entirely by geomorphic or climatic forcings. Rather, they are best interpreted as resulting from surface uplift centered over the northeast-trending Jemez lineament, and our model suggests that both the faulting and broad bending may relate to mantle driven epeirogeny that caused differential river incision. Several interacting neotectonic and magmatic mechanisms may have contributed to postulated uplift. Magmatically driven geodynamic uplift forcings may include construction of the Mount Taylor stratovolcano just north of the RSJ that changed surface elevation by several kilometers at the volcanic peak itself. However, semisteady denudation and similar incision rates in other rivers in the region indicate that a regional erosional landscape was the primary driver of differential river incision over the past 5–8 Ma. Our focus on the pre–Mount Tayler RSJ paleoprofile reinforces this conclusion. Other mantle-related uplift mechanisms that may have generated mantle buoyancy include thermal buoyancy or magmatic inflation due to dike and sill networks related to the building of the Mount Taylor stratovolcano and eruption of Zuni-Bandera volcanic fields. Both could have contributed to uplift, but their relative importance is unknown. Broad epeirogenic uplift is also possible due to small-scale upper mantle convection beneath a thin elastic plate and resulting dynamic topography

    U-series geochronology of large-volume Quaternary travertine deposits of the southeastern Colorado Plateau: Evaluating episodicity and tectonic and paleohydrologic controls

    No full text
    Large-volume travertine deposits in the southeastern Colorado Plateau of New Mexico and Arizona, USA, occur along the Jemez lineament and Rio Grande rift. These groundwater discharge deposits reflect vent locations for mantle-derived CO2 , which was conveyed by deeply sourced hydrothermal fluid input into springs. U-series dating of stratigraphic sections shows that major aggradation and large-volume (2.5 km3 ) deposition took place across the region episodically at 700–500 ka, 350–200 ka, and 100–40 ka. These pulses of travertine formation coincide with the occurrence of regional basaltic volcanism, which implies an association of travertine deposits with underlying low-velocity mantle that could supply the excess CO2 . The calculation of landscape denudation rates based on basalt paleosurfaces shows that travertine platforms developed on local topographic highs that required artesian head and fault conduits. Episodic travertine accumulation that led to the formation of the observed travertine platforms represents conditions when fault conduits, high hydraulic head, and high CO2 flux within confined aquifer systems were all favorable for facilitating large-volume travertine formation, which was therefore controlled by tectonic activity and paleohydrology. By analogy to the active Springerville–St. Johns CO2 gas fi eld, the large volumes and similar platform geometries of travertine occurrences in this study are interpreted to represent extinct CO2 gas reservoirs that were vents for degassing of mantle volatiles into the near-surface system

    Local adaptation of switchgrass drives trait relations to yield and differential responses to climate and soil environments

    No full text
    Abstract Switchgrass, a potential biofuel crop, is a genetically diverse species with phenotypic plasticity enabling it to grow in a range of environments. Two primary divergent ecotypes, uplands and lowlands, exhibit trait combinations representative of acquisitive and conservative growth allocation strategies, respectively. Whether these ecotypes respond differently to various types of environmental drivers remains unclear but is crucial to understanding how switchgrass varieties will respond to climate change. We grew two upland, two lowland, and two intermediate/hybrid cultivars of switchgrass at three sites along a latitudinal gradient in the central United States. Over a 4‐year period, we measured plant functional traits and biomass yields and evaluated genotype‐by‐environment (G × E) interaction effects by analyzing switchgrass responses to soil and climate variables. We found substantial evidence of G × E interactions on biomass yield, primarily due to deviations in the response of the southern lowland cultivar Alamo, which produced more biomass in hotter and drier environments relative to other cultivars. While lowland cultivars had the highest potential for yield, their yields were more variable year‐to‐year compared to other cultivars, suggesting greater sensitivity to environmental perturbations. Models comparing soil and climate principal components as explanatory variables revealed soil properties, especially nutrients, to be most effective at predicting switchgrass biomass yield. Also, positive correlations between biomass yield and conservative plant traits, such as high stem mass and tiller height,  became stronger at lower latitudes where the climate is hotter and drier, regardless of ecotype. Lowland cultivars, however, showed a greater predisposition to exhibit these conservative traits. These results suggest switchgrass trait allocation trade‐offs that prioritize aboveground biomass production are more tightly associated in hot, dry environments and that lowland cultivars may exhibit a more specialized strategy relative to other cultivars. Altogether, this research provides essential knowledge for improving the viability of switchgrass as a biofuel crop

    Genetic Diversity of Black Salamanders (Aneides flavipunctatus) across Watersheds in the Klamath Mountains

    No full text
    Here we characterize the genetic structure of Black Salamanders (Aneides flavipunctatus) in the Klamath Mountains of northwestern California and southwestern Oregon using mitochondrial and nuclear DNA sequences. We hypothesized that the Sacramento, Smith, Klamath, and Rogue River watersheds would represent distinct genetic populations based on prior ecological results, which suggest that Black Salamanders avoid high elevations such as the ridges that separate watersheds. Our mitochondrial results revealed two major lineages, one in the Sacramento River watershed, and another containing the Klamath, Smith, and Rogue River watersheds. Clustering analyses of our thirteen nuclear loci show the Sacramento watershed population to be genetically distinctive. Populations in the Klamath, Smith, and Rogue watersheds are also distinctive but not as differentiated and their boundaries do not correspond to watersheds. Our historical demographic analyses suggest that the Sacramento population has been isolated from the Klamath populations since the mid-Pleistocene, with negligible subsequent gene flow (2 Nm ≀ 0.1). The Smith and Rogue River watershed populations show genetic signals of recent population expansion. These results suggest that the Sacramento River and Klamath River watersheds served as Pleistocene refugia, and that the Rogue and Smith River watersheds were colonized more recently by northward range expansion from the Klamath

    Synchronous opening of the Rio Grande rift along its entire length at 25–10 Ma supported by apatite (U-Th)/He and fission-track thermochronology, and evaluation of possible driving mechanisms

    No full text
    152 new apatite (U-Th)/He (AHe) dates are presented from 34 sample locations along the flanks of the Rio Grande rift in New Mexico and Colorado. These data are combined with apatite fission-track (AFT) analyses of the same rocks and modeled together to create well constrained cooling histories for Rio Grande rift flank uplifts. The data indicate rapid cooling from ~28 Ma to Recent in the Sawatch Range and the Sangre de Cristo Mountains, ~21 to 5 Ma in the Albuquerque basin, and ~17 to 8 Ma in the southern Rio Grande rift in southern New Mexico. Rapid cooling of rift flanks followed the Oligocene ignimbrite flare-up and the northern section of the Rio Grande rift in Colorado exhibits semi-continuous cooling since the Oligocene. Overall, however, rift flank cooling along the length of the rift was out of phase with high volume magmatism and hence is inferred to have been driven mainly by exhumation due to faulting. Although each location preserves a unique cooling history, when combined with existing AHe data from the Gore Range in northern Colorado and the Sandia Mountains in New Mexico together these data indicate ~ synchronous extension and rift flank uplift along \u3e850 km of the length of the Rio Grande rift from ~20-10 Ma. These time-space constraints provide an important new dataset to develop geodynamic models for initiation and evolution of continental rifting. Models involving northward unzipping and Colorado Plateau rotation are not favored as primary mechanisms driving extension. Instead, a geodynamic model is proposed that involves upper mantle dynamics during multi-stage foundering and rollback of a segment of the Farallon plate near the Laramide hinge region that extended between the Wyoming and SE New Mexico high velocity mantle domains. First stage delamination accompanied and followed ~40-20 Ma volcanism in the San Juan and Mogollon-Datil ignimbrite centers. A second stage involved a ~30-20 Ma detachment of the remaining part of the Farallon slab. This produced renewed uplift of the Alvarado Ridge topographic high, enhanced surface uplift of rift flanks, developed a central graben with increased fault- related high strain rates, and resulted in maximum sediment accumulation in the Rio Grande rift. Our geodynamic model thus involves Oligocene removal of parts of the Farallon slab beneath the ignimbrite centers followed by a major Oligocene-Miocene slab break that instigated the discrete N-S Rio Grande rift, continuing upper mantle convection, and differential uplift of the southern Rocky Mountain - Rio Grande rift region
    corecore