134 research outputs found
Plunging Floater Survival Causes Cryptic Population Decline in the Common Loon
Populations of many vertebrates are declining and geographic ranges contracting, largely as a consequence of anthropogenic threats. Many reports of such decline, however, lack the breadth and detail to narrow down its causes. Here we describe population decline in the Common Loon (Gavia immer), a charismatic aquatic bird, based on systematic resighting and measurement of a marked population. During our 27-year investigation, age-adjusted chick mass has fallen by 11%, mortality among young and old chicks has increased by 31% and 82%, respectively, and fledging success has declined by 26%. Meanwhile, the return rate of marked nonbreeders (“floaters”) has plunged by 53%, and the adult population overall has declined by 22%. Consistent with the thinning ranks of floaters, the rate of territory eviction has decreased by 52% during the study. Despite the decline in floaters, territory occupancy remains unchanged. However, a matrix model, updated with recent estimates for breeding success, juvenile survival, and senescence, yields a recalculated deterministic population growth rate (λ) of 0.94 for our study population, which suggests that declines in vital rates could lead to a loss of 52% of the current population and a decline of 37% in territory occupancy by 2031. Lack of data on floaters in other upper Midwest and New England loon populations leaves their status in doubt
A novel method for RNA extraction from FFPE samples reveals significant differences in biomarker expression between orthotopic and subcutaneous pancreatic cancer patient-derived xenografts.
Next-generation sequencing (NGS) can identify and validate new biomarkers of cancer onset, progression and therapy resistance. Substantial archives of formalin-fixed, paraffin-embedded (FFPE) cancer samples from patients represent a rich resource for linking molecular signatures to clinical data. However, performing NGS on FFPE samples is limited by poor RNA purification methods. To address this hurdle, we developed an improved methodology for extracting high-quality RNA from FFPE samples. By briefly integrating a newly-designed micro-homogenizing (mH) tool with commercially available FFPE RNA extraction protocols, RNA recovery is increased by approximately 3-fold while maintaining standard A260/A280 ratios and RNA quality index (RQI) values. Furthermore, we demonstrate that the mH-purified FFPE RNAs are longer and of higher integrity. Previous studies have suggested that pancreatic ductal adenocarcinoma (PDAC) gene expression signatures vary significantly under in vitro versus in vivo and in vivo subcutaneous versus orthotopic conditions. By using our improved mH-based method, we were able to preserve established expression patterns of KRas-dependency genes within these three unique microenvironments. Finally, expression analysis of novel biomarkers in KRas mutant PDAC samples revealed that PEAK1 decreases and MST1R increases by over 100-fold in orthotopic versus subcutaneous microenvironments. Interestingly, however, only PEAK1 levels remain elevated in orthotopically grown KRas wild-type PDAC cells. These results demonstrate the critical nature of the orthotopic tumor microenvironment when evaluating the clinical relevance of new biomarkers in cells or patient-derived samples. Furthermore, this new mH-based FFPE RNA extraction method has the potential to enhance and expand future FFPE-RNA-NGS cancer biomarker studies
Pre- and Post-Activity Stretching Practices of Collegiate Soccer Coaches in the United States
International Journal of Exercise Science 13(6): 260-272, 2020. Current pre- and post-activity stretching guidelines are designed to optimize performance and reduce injury risk. However, it is unclear whether soccer coaches adhere to these recommendations. The purpose of this study was to determine if collegiate soccer coaches’ perceptions and practices align with current scientific recommendations. A total of 781 questionnaires were electronically distributed to soccer coaches from NCAA Division I and III universities.The questionnaire obtained demographic, professional, and educational information, as well as stretching practices. Statistical analysis consisted of computing frequency counts and means where applicable. Pearson\u27s Chi-square tests were performed to assess the potential differences in stretching perceptions and practices among the cohort of soccer coaches. Results suggest that soccer coaches are choosing some forms of stretching more frequently than other coaches (χ2= 342.7, p\u3c 0.001). Further analysis failed to determine significant associations between stretching type and coaching certification, level, sex, years of experience, and age. Of the 209 respondents, 84.9% believed pre-activity stretching to be of greater than average importance on a seven-point Likert scale. Dynamic stretching (68.7%) or a combination of static and ballistic stretching (18.0%) prior to athletic events was the most typical stretching prescribed. Current post-activity practices demonstrate that most coaches (95.4%) are using some form of a general cool-down following practice or competition. This study is an important assessment of the extent to which collegiate coaches administer appropriate stretching techniques. Most coaches adhere to current recommendations; however, they should continue to evaluate their practices against ongoing research and the practices of their peers
Effect of Cognitive Behavioral Therapy for Insomnia on Insomnia Symptoms for Individuals With Type 2 Diabetes: Protocol for a Pilot Randomized Controlled Trial
A grant from the One-University Open Access Fund at the University of Kansas was used to defray the author's publication fees in this Open Access journal. The Open Access Fund, administered by librarians from the KU, KU Law, and KUMC libraries, is made possible by contributions from the offices of KU Provost, KU Vice Chancellor for Research & Graduate Studies, and KUMC Vice Chancellor for Research. For more information about the Open Access Fund, please see http://library.kumc.edu/authors-fund.xml.Background: Insomnia symptoms are a common form of sleep difficulty among people with type 2 diabetes (T2D) affecting sleep quality and health outcomes. Several interventional approaches have been used to improve sleep outcomes in people with T2D. Nonpharmacological approaches, such as cognitive behavioral therapy for insomnia (CBT-I), show promising results regarding safety and sustainability of improvements, although CBT-I has not been examined in people with T2D. Promoting sleep for people with insomnia and T2D could improve insomnia severity and diabetes outcomes.
Objective: The objective of this study is to establish a protocol for a pilot randomized controlled trial (RCT) to examine the effect of 6 sessions of CBT-I on insomnia severity (primary outcome), sleep variability, and other health-related outcomes in individuals with T2D and insomnia symptoms.
Methods: This RCT will use random mixed block size randomization with stratification to assign 28 participants with T2D and insomnia symptoms to either a CBT-I group or a health education group. Outcomes including insomnia severity; sleep variability; diabetes self-care behavior (DSCB); glycemic control (A1c); glucose level; sleep quality; daytime sleepiness; and symptoms of depression, anxiety, and pain will be gathered before and after the 6-week intervention. Chi-square and independent t tests will be used to test for between-group differences at baseline. Independent t tests will be used to examine the effect of the CBT-I intervention on change score means for insomnia severity, sleep variability, DSCB, A1c, fatigue, sleep quality, daytime sleepiness, and severity of depression, anxiety, and pain. For all analyses, alpha level will be set at .05.
Results: This study recruitment began in February 2019 and was completed in September 2019.
Conclusions: The intervention, including 6 sessions of CBT-I, will provide insight about its effect in improving insomnia symptoms, sleep variability, fatigue, and diabetes-related health outcomes in people with T2D and those with insomnia symptoms when compared with control
Intramedullary melanotic schwannoma
We present a case of an intramedullary melanotic schwannoma (IMS) of the thoracic spinal cord. To our knowledge, this is the seventh reported case of an IMS of the central nervous system. Schwannomas are benign nerve sheath tumors of neural crest origin composed entirely of well differentiated Schwann cells that typically occur in peripheral nerves. Both the intramedullary location and the melanotic component of the reported lesion make it exceedingly rare. We will present our case, theories as to the origin of these tumors, clues in radiographic identification, and current clinical follow-up recommendations
An efficient and high-throughput approach for experimental validation of novel human gene predictions
AbstractA highly automated RT-PCR-based approach has been established to validate novel human gene predictions with no prior experimental evidence of mRNA splicing (ab initio predictions). Ab initio gene predictions were selected for high-throughput validation using predicted protein classification, sequence similarity to other genomes, colocalization with an MPSS tag, or microarray expression. Initial microarray prioritization followed by RT-PCR validation was the most efficient combination, resulting in approximately 35% of the ab initio predictions being validated by RT-PCR. Of the 7252 novel genes that were prioritized and processed, 796 constituted real transcripts. In addition, high-throughput RACE successfully extended the 5′ and/or 3′ ends of >60% of RT-PCR-validated genes. Reevaluation of these transcripts produced 574 novel transcripts using RefSeq as a reference. RT-PCR sequencing in combination with RACE on ab initio gene predictions could be used to define the transcriptome across all species
Whole-Genome Sequencing of a Single Proband Together with Linkage Analysis Identifies a Mendelian Disease Gene
Although more than 2,400 genes have been shown to contain variants that cause Mendelian disease, there are still several thousand such diseases yet to be molecularly defined. The ability of new whole-genome sequencing technologies to rapidly indentify most of the genetic variants in any given genome opens an exciting opportunity to identify these disease genes. Here we sequenced the whole genome of a single patient with the dominant Mendelian disease, metachondromatosis (OMIM 156250), and used partial linkage data from her small family to focus our search for the responsible variant. In the proband, we identified an 11 bp deletion in exon four of PTPN11, which alters frame, results in premature translation termination, and co-segregates with the phenotype. In a second metachondromatosis family, we confirmed our result by identifying a nonsense mutation in exon 4 of PTPN11 that also co-segregates with the phenotype. Sequencing PTPN11 exon 4 in 469 controls showed no such protein truncating variants, supporting the pathogenicity of these two mutations. This combination of a new technology and a classical genetic approach provides a powerful strategy to discover the genes responsible for unexplained Mendelian disorders
Guiding Brain Tumor Resection Using Surface-Enhanced Raman Scattering Nanoparticles and a Hand-Held Raman Scanner
The current difficulty in visualizing the true extent of malignant brain tumors during surgical resection represents one of the major reasons for the poor prognosis of brain tumor patients. Here, we evaluated the ability of a hand-held Raman scanner, guided by surface-enhanced Raman scattering (SERS) nanoparticles, to identify the microscopic tumor extent in a genetically engineered RCAS/tv-a glioblastoma mouse model. In a simulated intraoperative scenario, we tested both a static Raman imaging device and a mobile, hand-held Raman scanner. We show that SERS image-guided resection is more accurate than resection using white light visualization alone. Both methods complemented each other, and correlation with histology showed that SERS nanoparticles accurately outlined the extent of the tumors. Importantly, the hand-held Raman probe not only allowed near real-time scanning, but also detected additional microscopic foci of cancer in the resection bed that were not seen on static SERS images and would otherwise have been missed. This technology has a strong potential for clinical translation because it uses inert gold-silica SERS nanoparticles and a hand-held Raman scanner that can guide brain tumor resection in the operating room
Signal transducer and activator of transcription 1 (STAT1) gain-of-function mutations and disseminated coccidioidomycosis and histoplasmosis
Background: Impaired signaling in the IFN-g/IL-12 pathway causes susceptibility to severe disseminated infections with mycobacteria and dimorphic yeasts. Dominant gain-of-function mutations in signal transducer and activator of transcription 1 (STAT1) have been associated with chronic mucocutaneous candidiasis.
Objective: We sought to identify the molecular defect in patients with disseminated dimorphic yeast infections.
Methods: PBMCs, EBV-transformed B cells, and transfected U3A cell lines were studied for IFN-g/IL-12 pathway function. STAT1 was sequenced in probands and available relatives. Interferon-induced STAT1 phosphorylation, transcriptional responses, protein-protein interactions, target gene activation, and function were investigated.
Results: We identified 5 patients with disseminated Coccidioides immitis or Histoplasma capsulatum with heterozygous missense mutations in the STAT1 coiled-coil or DNA-binding domains. These are dominant gain-of-function mutations causing enhanced STAT1 phosphorylation, delayed dephosphorylation, enhanced DNA binding and transactivation, and enhanced interaction with protein inhibitor of activated STAT1. The mutations caused enhanced IFN-g–induced gene expression, but we found impaired responses to IFN-g restimulation.
Conclusion: Gain-of-function mutations in STAT1 predispose to invasive, severe, disseminated dimorphic yeast infections, likely through aberrant regulation of IFN-g–mediated inflammationFil: Sampaio, Elizabeth P.. National Institutes of Health. National Institute of Allergy and Infectious Diseases. Laboratory of Clinical Infectious Diseases. Immunopathogenesis Section; Estados Unidos. Instituto Oswaldo Cruz. Laboratorio de Leprologia; BrasilFil: Hsu, Amy P.. National Institutes of Health. National Institute of Allergy and Infectious Diseases. Laboratory of Clinical Infectious Diseases. Immunopathogenesis Section; Estados UnidosFil: Pechacek, Joseph. National Institutes of Health. National Institute of Allergy and Infectious Diseases. Laboratory of Clinical Infectious Diseases. Immunopathogenesis Section; Estados UnidosFil: Hannelore I.. National Institutes of Health. National Institute of Allergy and Infectious Diseases. Laboratory of Clinical Infectious Diseases. Immunopathogenesis Section; Estados Unidos. Erasmus Medical Center. Department of Medical Microbiology and Infectious Disease; PaĂses BajosFil: Dias, Dalton L.. National Institutes of Health. National Institute of Allergy and Infectious Diseases. Laboratory of Clinical Infectious Diseases. Immunopathogenesis Section; Estados UnidosFil: Paulson, Michelle L.. Clinical Research Directorate/CMRP; Estados UnidosFil: Chandrasekaran, Prabha. National Institutes of Health. National Institute of Allergy and Infectious Diseases. Laboratory of Clinical Infectious Diseases. Immunopathogenesis Section; Estados UnidosFil: Rosen, Lindsey B.. National Institutes of Health. National Institute of Allergy and Infectious Diseases. Laboratory of Clinical Infectious Diseases. Immunopathogenesis Section; Estados UnidosFil: Carvalho, Daniel S.. National Institutes of Health. National Institute of Allergy and Infectious Diseases. Laboratory of Clinical Infectious Diseases. Immunopathogenesis Section; Estados Unidos. Instituto Oswaldo Cruz, Laboratorio de Leprologia; BrasilFil: Ding, Li. National Institutes of Health. National Institute of Allergy and Infectious Diseases. Laboratory of Clinical Infectious Diseases. Immunopathogenesis Section; Estados UnidosFil: Vinh, Donald C.. McGill University Health Centre. Division of Infectious Diseases; CanadáFil: Browne, Sarah K.. National Institutes of Health. National Institute of Allergy and Infectious Diseases. Laboratory of Clinical Infectious Diseases. Immunopathogenesis Section; Estados UnidosFil: Datta, Shrimati. National Institutes of Health. National Institute of Allergy and Infectious Diseases. Laboratory of Allergic Diseases. Allergic Inflammation Unit; Estados UnidosFil: Milner, Joshua D.. National Institutes of Health. National Institute of Allergy and Infectious Diseases. Laboratory of Allergic Diseases. Allergic Inflammation Unit; Estados UnidosFil: Kuhns, Douglas B.. Clinical Services Program; Estados UnidosFil: Long Priel, Debra A.. Clinical Services Program; Estados UnidosFil: Sadat, Mohammed A.. National Institutes of Health. National Institute of Allergy and Infectious Diseases. Laboratory of Host Defenses. Infectious Diseases Susceptibility Unit; Estados UnidosFil: Shiloh, Michael. University of Texas. Southwestern Medical Center. Division of Infectious Diseases; Estados UnidosFil: De Marco, Brendan. University of Texas. Southwestern Medical Center. Division of Infectious Diseases; Estados UnidosFil: Alvares, Michael. University of Texas. Southwestern Medical Center. Division of Allergy and Immunology; Estados UnidosFil: Gillman, Jason W.. University of Texas. Southwestern Medical Center. Division of Infectious Diseases; Estados UnidosFil: Ramarathnam, Vivek. University of Texas. Southwestern Medical Center. Division of Infectious Diseases; Estados UnidosFil: de la Morena, Maite. University of Texas. Southwestern Medical Center. Division of Allergy and Immunology; Estados UnidosFil: Bezrodnik, Liliana. Gobierno de la Ciudad de Buenos Aires. Hospital General de Niños "Ricardo Gutierrez"; Argentina. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas; ArgentinaFil: Moreira, Ileana. Gobierno de la Ciudad de Buenos Aires. Hospital General de Niños "Ricardo Gutierrez"; ArgentinaFil: Uzel, Gulbu. National Institutes of Health. National Institute of Allergy and Infectious Diseases. Laboratory of Clinical Infectious Diseases. Immunopathogenesis Section; Estados UnidosFil: Johnson, Daniel. University of Chicago. Comer Children; Estados UnidosFil: Spalding, Christine. National Institutes of Health. National Institute of Allergy and Infectious Diseases. Laboratory of Clinical Infectious Diseases. Immunopathogenesis Section; Estados UnidosFil: Zerbe, Christa S.. National Institutes of Health. National Institute of Allergy and Infectious Diseases. Laboratory of Clinical Infectious Diseases. Immunopathogenesis Section; Estados UnidosFil: Wiley, Henry. National Eye Institute. Clinical Trials Branch; Estados UnidosFil: Greenberg, David E.. University of Texas. Southwestern Medical Center. Division of Infectious Diseases; Estados UnidosFil: Hoover, Susan E.. University of Arizona. College of Medicine. Valley Fever Center for Excellence; Estados UnidosFil: Rosenzweig, Sergio D.. National Institutes of Health. National Institute of Allergy and Infectious Diseases. Laboratory of Host Defenses Infectious Diseases Susceptibility Unit; Estados Unidos. National Institutes of Health. National Institute of Allergy and Infectious Diseases. Primary Immunodeficiency Clinic; Estados UnidosFil: Galgiani, John N.. University of Arizona. College of Medicine. Valley Fever Center for Excellence; Estados UnidosFil: Holland, Steven M.. National Institutes of Health. National Institute of Allergy and Infectious Diseases. Laboratory of Clinical Infectious Diseases. Immunopathogenesis Section; Estados Unido
The Characterization of Twenty Sequenced Human Genomes
We present the analysis of twenty human genomes to evaluate the prospects for identifying rare functional variants that contribute to a phenotype of interest. We sequenced at high coverage ten “case” genomes from individuals with severe hemophilia A and ten “control” genomes. We summarize the number of genetic variants emerging from a study of this magnitude, and provide a proof of concept for the identification of rare and highly-penetrant functional variants by confirming that the cause of hemophilia A is easily recognizable in this data set. We also show that the number of novel single nucleotide variants (SNVs) discovered per genome seems to stabilize at about 144,000 new variants per genome, after the first 15 individuals have been sequenced. Finally, we find that, on average, each genome carries 165 homozygous protein-truncating or stop loss variants in genes representing a diverse set of pathways
- …