394 research outputs found
Deficiency in the mouse mitochondrial adenine nucleotide translocator isoform 2 gene is associated with cardiac noncompaction.
The mouse fetal and adult hearts express two adenine nucleotide translocator (ANT) isoform genes. The predominant isoform is the heart-muscle-brain ANT-isoform gene 1 (Ant1) while the other is the systemic Ant2 gene. Genetic inactivation of the Ant1 gene does not impair fetal development but results in hypertrophic cardiomyopathy in postnatal mice. Using a knockin X-linked Ant2 allele in which exons 3 and 4 are flanked by loxP sites combined in males with a protamine 1 promoter driven Cre recombinase we created females heterozygous for a null Ant2 allele. Crossing the heterozygous females with the Ant2(fl), PrmCre(+) males resulted in male and female ANT2-null embryos. These fetuses proved to be embryonic lethal by day E14.5 in association with cardiac developmental failure, immature cardiomyocytes having swollen mitochondria, cardiomyocyte hyperproliferation, and cardiac failure due to hypertrabeculation/noncompaction. ANTs have two main functions, mitochondrial-cytosol ATP/ADP exchange and modulation of the mitochondrial permeability transition pore (mtPTP). Previous studies imply that ANT2 biases the mtPTP toward closed while ANT1 biases the mtPTP toward open. It has been reported that immature cardiomyocytes have a constitutively opened mtPTP, the closure of which signals the maturation of cardiomyocytes. Therefore, we hypothesize that the developmental toxicity of the Ant2 null mutation may be the result of biasing the cardiomyocyte mtPTP to remain open thus impairing cardiomyocyte maturation and resulting in cardiomyocyte hyperproliferation and failure of trabecular maturation. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi
Muscle contraction induces osteogenic levels of cortical bone strain despite muscle weakness in a mouse model of Osteogenesis Imperfecta
Mechanical interactions between muscle and bone have long been recognized as integral to bone integrity. However, few studies have directly measured these interactions within the context of musculoskeletal disease. In this study, the osteogenesis imperfecta murine model (oim/oim) was utilized because it has both reduced bone and muscle properties, allowing direct assessment of whether weakened muscle is able to engender strain on weakened bone. To do so, a strain gauge was attached to the tibia of healthy and oim/oim mice, muscles within the posterior quadrant of the lower hind limb were stimulated, and bone strain during muscle contraction was measured. Results indicated that the relationship between maximum muscle torque and maximum engendered strain is altered in oim/oim bone, with less torque required to engender strain compare to wild-type and heterozygous mice. Maximum muscle torque at 150 Hz stimulation frequency was able to engender ~1500 μɛ in oim/oim animals. However, even though the strain engendered in the oim/oim mice was high relative to historical bone formation thresholds, the maximum strain values were still significantly lower than that of the wild-type mice. These results are promising in that they suggest that muscle stimulation may be a viable means of inducing bone formation in oim/oim and potentially other disease models where muscle weakness/atrophy exist
Dynamical Mass Measurement of the Young Spectroscopic Binary V343 Normae AaAb Resolved With the Gemini Planet Imager
We present new spatially resolved astrometry and photometry from the Gemini
Planet Imager of the inner binary of the young multiple star system V343
Normae, which is a member of the beta Pictoris moving group. V343 Normae
comprises a K0 and mid-M star in a ~4.5 year orbit (AaAb) and a wide 10" M5
companion (B). By combining these data with archival astrometry and radial
velocities we fit the orbit and measure individual masses for both components
of M_Aa = 1.10 +/- 0.10 M_sun and M_Ab = 0.290 +/- 0.018 M_sun. Comparing to
theoretical isochrones, we find good agreement for the measured masses and JHK
band magnitudes of the two components consistent with the age of the beta Pic
moving group. We derive a model-dependent age for the beta Pic moving group of
26 +/- 3 Myr by combining our results for V343 Normae with literature
measurements for GJ 3305, which is another group member with resolved binary
components and dynamical masses.Comment: 12 pages, 7 figures. Accepted to A
Genome-wide assessment of population structure and association mapping for agronomic and grain nutritional traits in proso millet (Panicum miliaceum L.)
Proso millet is an important but under-researched and underutilized crop with the potential to become a future smart crop because of its climate-resilient features and high nutrient content. Assessing diversity and marker-trait associations are essential to support the genomics-assisted improvement of proso millet. This study aimed to assess the population structure and diversity of a proso millet diversity panel and identify marker-trait associations for agronomic and grain nutrient traits. In this study, genome-wide single nucleotide polymorphisms (SNPs) were identified by mapping raw genotyping-by-sequencing (GBS) data onto the proso millet genome, resulting in 5621 quality-filtered SNPs in 160 diverse accessions. The modified Roger's Distance assessment indicated an average distance of 0.268 among accessions, with the race miliaceum exhibiting the highest diversity and ovatum the lowest. Proso millet germplasm diversity was structured according to geographic centers of origin and domestication. Genome-wide association mapping identified 40 marker-trait associations (MTAs), including 34 MTAs for agronomic traits and 6 for grain nutrients; 20 of these MTAs were located within genes. Favourable alleles and phenotypic values were estimated for all MTAs. This study provides valuable insights into the population structure and diversity of proso millet, identified marker-trait associations, and reported favourable alleles and their phenotypic values for supporting genomics-assisted improvement efforts in proso millet
The Impact of HAART on the Respiratory Complications of HIV Infection: Longitudinal Trends in the MACS and WIHS Cohorts
Objective: To review the incidence of respiratory conditions and their effect on mortality in HIV-infected and uninfected individuals prior to and during the era of highly active antiretroviral therapy (HAART). Design: Two large observational cohorts of HIV-infected and HIV-uninfected men (Multicenter AIDS Cohort Study [MACS]) and women (Women's Interagency HIV Study [WIHS]), followed since 1984 and 1994, respectively. Methods: Adjusted odds or hazards ratios for incident respiratory infections or non-infectious respiratory diagnoses, respectively, in HIV-infected compared to HIV-uninfected individuals in both the pre-HAART (MACS only) and HAART eras; and adjusted Cox proportional hazard ratios for mortality in HIV-infected persons with lung disease during the HAART era. Results: Compared to HIV-uninfected participants, HIV-infected individuals had more incident respiratory infections both pre-HAART (MACS, odds ratio [adjusted-OR], 2.4; 95% confidence interval [CI], 2.2-2.7; p<0.001) and after HAART availability (MACS, adjusted-OR, 1.5; 95%CI 1.3-1.7; p<0.001; WIHS adjusted-OR, 2.2; 95%CI 1.8-2.7; p<0.001). Chronic obstructive pulmonary disease was more common in MACS HIV-infected vs. HIV-uninfected participants pre-HAART (hazard ratio [adjusted-HR] 2.9; 95%CI, 1.02-8.4; p = 0.046). After HAART availability, non-infectious lung diseases were not significantly more common in HIV-infected participants in either MACS or WIHS participants. HIV-infected participants in the HAART era with respiratory infections had an increased risk of death compared to those without infections (MACS adjusted-HR, 1.5; 95%CI, 1.3-1.7; p<0.001; WIHS adjusted-HR, 1.9; 95%CI, 1.5-2.4; p<0.001). Conclusion: HIV infection remained a significant risk for infectious respiratory diseases after the introduction of HAART, and infectious respiratory diseases were associated with an increased risk of mortality. © 2013 Gingo et al
Recommended from our members
Vulnerability to climate change of managed stocks in the California Current large marine ecosystem
Introduction: Understanding how abundance, productivity and distribution of individual species may respond to climate change is a critical first step towards anticipating alterations in marine ecosystem structure and function, as well as developing strategies to adapt to the full range of potential changes. Methods: This study applies the NOAA (National Oceanic and Atmospheric Administration) Fisheries Climate Vulnerability Assessment method to 64 federally-managed species in the California Current Large Marine Ecosystem to assess their vulnerability to climate change, where vulnerability is a function of a species’ exposure to environmental change and its biological sensitivity to a set of environmental conditions, which includes components of its resiliency and adaptive capacity to respond to these new conditions. Results: Overall, two-thirds of the species were judged to have Moderate or greater vulnerability to climate change, and only one species was anticipated to have a positive response. Species classified as Highly or Very Highly vulnerable share one or more characteristics including: 1) having complex life histories that utilize a wide range of freshwater and marine habitats; 2) having habitat specialization, particularly for areas that are likely to experience increased hypoxia; 3) having long lifespans and low population growth rates; and/or 4) being of high commercial value combined with impacts from non-climate stressors such as anthropogenic habitat degradation. Species with Low or Moderate vulnerability are either habitat generalists, occupy deep-water habitats or are highly mobile and likely to shift their ranges. Discussion: As climate-related changes intensify, this work provides key information for both scientists and managers as they address the long-term sustainability of fisheries in the region. This information can inform near-term advice for prioritizing species-level data collection and research on climate impacts, help managers to determine when and where a precautionary approach might be warranted, in harvest or other management decisions, and help identify habitats or life history stages that might be especially effective to protect or restore
CD8+ T Cells from SIV Elite Controller Macaques Recognize Mamu-B*08-Bound Epitopes and Select for Widespread Viral Variation
Background. It is generally accepted that CD8(+) T cell responses play an important role in control of immunodeficiency virus replication. the association of HLA-B27 and -B57 with control of viremia supports this conclusion. However, specific correlates of viral control in individuals expressing these alleles have been difficult to define. We recently reported that transient in vivo CD8(+) cell depletion in simian immunodeficiency virus (SIV)-infected elite controller (EC) macaques resulted in a brief period of viral recrudescence. SIV replication was rapidly controlled with the reappearance of CD8(+) cells, implicating that these cells actively suppress viral replication in ECs. Methods and Findings. Here we show that three ECs in that study made at least seven robust CD8(+) T cell responses directed against novel epitopes in Vif, Rev, and Nef restricted by the MHC class I molecule Mamu-B*08. Two of these Mamu-B*08-positive animals subsequently lost control of SIV replication. Their breakthrough virus harbored substitutions in multiple Mamu-B*08-restricted epitopes. Indeed, we found evidence for selection pressure mediated by Mamu-B*08-restricted CD8(+) T cells in all of the newly identified epitopes in a cohort of chronically infected macaques. Conclusions. Together, our data suggest that Mamu-B*08-restricted CD8(+) T cell responses effectively control replication of pathogenic SIV(mac)239. All seven regions encoding Mamu-B*08-restricted CD8(+) T cell epitopes also exhibit amino acid replacements typically seen only in the presence of Mamu-B*08, suggesting that the variation we observe is indeed selected by CD8(+) T cell responses. SIVmac239 infection of Indian rhesus macaques expressing Mamu-B*08 may therefore provide an animal model for understanding CD8(+) T cell-mediated control of HIV replication in humans.National Institutes of Health (NIH)National Center for Research Resources (NCRR)Japan Health Sciences FoundationKent State University Research CouncilOhio Board of Regents Research ChallengeResearch Facilities ImprovementUniv Wisconsin, WNPRC, Madison, WI 53706 USAUniversidade Federal de São Paulo, Div Infect Dis, São Paulo, BrazilUniv Wisconsin, Dept Pathol & Lab Med, Madison, WI USALa Jolla Inst Allergy & Immunol, Div Vaccine Discovery, La Jolla, CA USAUniv Oxford, John Radcliffe Hosp, Weatherall Inst Mol Med, Oxford OX3 9DU, EnglandKent State Univ, Dept Biol Sci, Kent, OH 44242 USAUniv S Carolina, Dept Biol Sci, Columbia, SC 29208 USAUniversidade Federal de São Paulo, Div Infect Dis, São Paulo, BrazilNational Institutes of Health (NIH): HHSN266200400088CNational Institutes of Health (NIH): R01 AI049120National Institutes of Health (NIH): R01 AI052056National Institutes of Health (NIH): R24 RR015371National Institutes of Health (NIH): R24 RR016038National Institutes of Health (NIH): R21 AI068586National Center for Research Resources (NCRR): P51 RR000167Japan Health Sciences Foundation: GM43940Research Facilities Improvement: RR15459-01Research Facilities Improvement: RR020141-01Web of Scienc
Population Genetics and Structure of a Global Foxtail Millet Germplasm Collection
Foxtail millet is one among the most ancient crops of dryland agriculture. It is the second most
important crop among millets, grown for grains or forage. Foxtail millet germplasm resources provide reservoirs of novel alleles and genes for crop improvement that have remained mostly unexplored. We genotyped a set of 190 foxtail millet germplasm accessions (including 155
accessions of the foxtail millet core collection) using genotyping-by-sequencing (GBS) for rapid single nucleotide polymorphisms (SNP) characterization to study population genetics and structure, which enable allele mining through association mapping approaches. After filtering a
total 350,000 raw SNPs identified across 190 germplasm accessions for Minor Allele Frequency (MAF), coverage for samples and coverage for sites, we retained 181 accessions with 17,714 high quality SNPs with ≥ 5% MAF. Genetic structure analyses revealed that foxtail millet
germplasm accessions are structured along both on the basis of races and geographic origin, and the maximum proportion of variation was due to among individuals within populations. Accessions of race indica were less diverse and are highly differentiated from those of maxima
and moharia. Genome-wide linkage disequilibrium (LD) analysis showed on an average LD extends up to ~150 kbp, and varied with individual chromosomes. The utility of these data for performing genome-wide association studies was tested with plant pigmentation and days to flowering, and identified significant marker-trait associations. This SNP data provides a foundation for exploration of foxtail millet diversity and for mining novel alleles and mapping
genes for economically important traits
Surveillance of FAP: a prospective blinded comparison of capsule endoscopy and other GI imaging to detect small bowel polyps
Background: Familial adenomatous polyposis (FAP) is a hereditary disorder characterized by polyposis along the gastrointestinal tract. Information on adenoma status below the duodenum has previously been restricted due to its inaccessibility in vivo. Ca
- …