619 research outputs found

    Radial Velocity Observations and Light Curve Noise Modeling Confirm That Kepler-91b is a Giant Planet Orbiting a Giant Star

    Get PDF
    Kepler-91b is a rare example of a transiting hot Jupiter around a red giant star, providing the possibility to study the formation and composition of hot Jupiters under different conditions compared to main-sequence stars. However, the planetary nature of Kepler-91b, which was confirmed using phase-curve variations by Lillo-Box et al., was recently called into question based on a re-analysis of Kepler data. We have obtained ground-based radial velocity observations from the Hobby-Eberly Telescope and unambiguously confirm the planetary nature of Kepler-91b by simultaneously modeling the Kepler and radial velocity data. The star exhibits temporally correlated noise due to stellar granulation which we model as a Gaussian Process. We hypothesize that it is this noise component that led previous studies to suspect Kepler-91b to be a false positive. Our work confirms the conclusions presented by Lillo-Box et al. that Kepler-91b is a 0.73+/-0.13 Mjup planet orbiting a red giant star.Comment: Published in Ap

    Diffusional Kurtosis Imaging in the Diffusion Imaging in Python Project.

    Get PDF
    Diffusion-weighted magnetic resonance imaging (dMRI) measurements and models provide information about brain connectivity and are sensitive to the physical properties of tissue microstructure. Diffusional Kurtosis Imaging (DKI) quantifies the degree of non-Gaussian diffusion in biological tissue from dMRI. These estimates are of interest because they were shown to be more sensitive to microstructural alterations in health and diseases than measures based on the total anisotropy of diffusion which are highly confounded by tissue dispersion and fiber crossings. In this work, we implemented DKI in the Diffusion in Python (DIPY) project-a large collaborative open-source project which aims to provide well-tested, well-documented and comprehensive implementation of different dMRI techniques. We demonstrate the functionality of our methods in numerical simulations with known ground truth parameters and in openly available datasets. A particular strength of our DKI implementations is that it pursues several extensions of the model that connect it explicitly with microstructural models and the reconstruction of 3D white matter fiber bundles (tractography). For instance, our implementations include DKI-based microstructural models that allow the estimation of biophysical parameters, such as axonal water fraction. Moreover, we illustrate how DKI provides more general characterization of non-Gaussian diffusion compatible with complex white matter fiber architectures and gray matter, and we include a novel mean kurtosis index that is invariant to the confounding effects due to tissue dispersion. In summary, DKI in DIPY provides a well-tested, well-documented and comprehensive reference implementation for DKI. It provides a platform for wider use of DKI in research on brain disorders and in cognitive neuroscience

    Evidence for microbial mediation of subseafloor nitrogen redox processes at Loihi Seamount, Hawaii

    Get PDF
    © The Author(s), 2016. This is the author's version of the work. It is posted here under a nonexclusive, irrevocable, paid-up, worldwide license granted to WHOI. It is made available for personal use, not for redistribution. The definitive version was published in Geochimica et Cosmochimica Acta 198 (2017): 131-150, doi:10.1016/j.gca.2016.10.029.The role of nitrogen cycling in submarine hydrothermal systems is far less studied than that of other biologically reactive elements such as sulfur and iron. In order to address this knowledge gap, we investigated nitrogen redox processes at Loihi Seamount, Hawaii, using a combination of biogeochemical and isotopic measurements, bioenergetic calculations and analysis of the prokaryotic community composition in venting fluids sampled during four cruises in 2006, 2008, 2009 and 2013. Concentrations of NH4+ were positively correlated to dissolved Si and negatively correlated to NO3-+NO2-, while NO2- was not correlated to NO3-+NO2-, dissolved Si or NH4+. This is indicative of hydrothermal input of NH4+ and biological mediation influencing NO2- concentrations. The stable isotope ratios of NO3- (d15N and d18O) was elevated with respect to background seawater, with d18O values exhibiting larger changes than corresponding d15N values, reflecting the occurrence of both production and reduction of NO3- by an active microbial community. d15N-NH4+ values ranged from 0‰ to +16.7‰, suggesting fractionation during consumption and potentially N-fixation as well. Bioenergetic calculations reveal that several catabolic strategies involving the reduction of NO3- and NO2- coupled to sulfide and iron oxidation could provide energy to microbes in Loihi fluids, while 16S rRNA gene sequencing of Archaea and Bacteria in the fluids reveals groups known to participate in denitrification and N-fixation. Taken together, our data support the hypothesis that microbes are mediating N-based redox processes in venting hydrothermal fluids at Loihi Seamount.This work was supported by the NSF Microbial Observatories program (MCB 0653265), the Gordon and Betty Moore Foundation (GBMF1609), NSF-OCE 0648287, the Center for Dark Energy Biosphere Investigations (C-DEBI) and the NASA Astrobiology Institute — Life Underground (NAI-LU). Sequence data was generated as part of the Alfred P. Sloan Foundation's ICoMM field project and the W. M. Keck Foundation

    The quest to model chronic traumatic encephalopathy: a multiple model and injury paradigm experience

    Get PDF
    Chronic neurodegeneration following a history of neurotrauma is frequently associated with neuropsychiatric and cognitive symptoms. In order to enhance understanding about the underlying pathophysiology linking neurotrauma to neurodegeneration, a multi-model preclinical approach must be established to account for the different injury paradigms and pathophysiologic mechanisms. We investigated the development of tau pathology and behavioral changes using a multi-model and multi-institutional approach, comparing the preclinical results to tauopathy patterns seen in post-mortem human samples from athletes diagnosed with chronic traumatic encephalopathy (CTE). We utilized a scaled and validated blast-induced traumatic brain injury model in rats and a modified pneumatic closed-head impact model in mice. Tau hyperphosphorylation was evaluated by western blot and immunohistochemistry. Elevated-plus maze and Morris water maze were employed to measure impulsive-like behavior and cognitive deficits respectively. Animals exposed to single blast (~50 PSI reflected peak overpressure) exhibited elevated AT8 immunoreactivity in the contralateral hippocampus at 1 month compared to controls (q = 3.96, p \u3c 0.05). Animals exposed to repeat blast (six blasts over 2 weeks) had increased AT8 (q = 8.12, p \u3c 0.001) and AT270 (q = 4.03, p \u3c 0.05) in the contralateral hippocampus at 1 month post-injury compared to controls. In the modified controlled closed-head impact mouse model, no significant difference in AT8 was seen at 7 days, however a significant elevation was detected at 1 month following injury in the ipsilateral hippocampus compared to control (q = 4.34, p \u3c 0.05). Elevated-plus maze data revealed that rats exposed to single blast (q = 3.53, p \u3c 0.05) and repeat blast (q = 4.21, p \u3c 0.05) spent more time in seconds exploring the open arms compared to controls. Morris water maze testing revealed a significant difference between groups in acquisition times on days 22–27. During the probe trial, single blast (t = 6.44, p \u3c 0.05) and repeat blast (t = 8.00, p \u3c 0.05) rats spent less time in seconds exploring where the platform had been located compared to controls. This study provides a multi-model example of replicating tau and behavioral changes in animals and provides a foundation for future investigation of CTE disease pathophysiology and therapeutic development

    Single Low-Dose Lipopolysaccharide Preconditioning: Neuroprotective Against Axonal Injury and Modulates Glial Cells

    Get PDF
    AIM: Over 7 million traumatic brain injuries (TBI) are reported each year in the United States. However, treatments and neuroprotection following TBI are limited because secondary injury cascades are poorly understood. Lipopolysaccharide (LPS) administration before controlled cortical impact can contribute to neuroprotection. However, the underlying mechanisms and whether LPS preconditioning confers neuroprotection against closed-head injuries remains unclear. METHODS: The authors hypothesized that preconditioning with a low dose of LPS (0.2 mg/kg) would regulate glial reactivity and protect against diffuse axonal injury induced by weight drop. LPS was administered 7 days prior to TBI. LPS administration reduced locomotion, which recovered completely by time of injury. RESULTS: LPS preconditioning significantly reduced the post-injury gliosis response near the corpus callosum, possibly by downregulating the oncostatin M receptor. These novel findings demonstrate a protective role of LPS preconditioning against diffuse axonal injury. LPS preconditioning successfully prevented neurodegeneration near the corpus callosum, as measured by fluorojade B. CONCLUSION: Further work is required to elucidate whether LPS preconditioning confers long-term protection against behavioral deficits and to elucidate the biochemical mechanisms responsible for LPS-induced neuroprotective effects

    Terrestrial Planet Occurrence Rates for the Kepler GK Dwarf Sample

    Get PDF
    We measure planet occurrence rates using the planet candidates discovered by the Q1-Q16 Kepler pipeline search. This study examines planet occurrence rates for the Kepler GK dwarf target sample for planet radii, 0.75<Rp<2.5 Rearth, and orbital periods, 50<Porb<300 days, with an emphasis on a thorough exploration and identification of the most important sources of systematic uncertainties. Integrating over this parameter space, we measure an occurrence rate of F=0.77 planets per star, with an allowed range of 0.3<F<1.9. The allowed range takes into account both statistical and systematic uncertainties, and values of F beyond the allowed range are significantly in disagreement with our analysis. We generally find higher planet occurrence rates and a steeper increase in planet occurrence rates towards small planets than previous studies of the Kepler GK dwarf sample. Through extrapolation, we find that the one year orbital period terrestrial planet occurrence rate, zeta_1=0.1, with an allowed range of 0.01<zeta_1<2, where zeta_1 is defined as the number of planets per star within 20% of the Rp and Porb of Earth. For G dwarf hosts, the zeta_1 parameter space is a subset of the larger eta_earth parameter space, thus zeta_1 places a lower limit on eta_earth for G dwarf hosts. From our analysis, we identify the leading sources of systematics impacting Kepler occurrence rate determinations as: reliability of the planet candidate sample, planet radii, pipeline completeness, and stellar parameters.Comment: 19 Pages, 17 Figures, Submitted ApJ. Python source to support Kepler pipeline completeness estimates available at http://github.com/christopherburke/KeplerPORTs

    Discovery and Validation of Kepler-452b: A 1.6-Re Super Earth Exoplanet in the Habitable Zone of a G2 Star

    Get PDF
    We report on the discovery and validation of Kepler-452b, a transiting planet identified by a search through the 4 years of data collected by NASA's Kepler Mission. This possibly rocky 1.63−0.20+0.23^{+0.23}_{-0.20} R⊕_\oplus planet orbits its G2 host star every 384.8430.012+0.007^{+0.007}_{0.012} days, the longest orbital period for a small (Rp_p < 2 R⊕_\oplus) transiting exoplanet to date. The likelihood that this planet has a rocky composition lies between 49% and 62%. The star has an effective temperature of 5757±\pm85 K and a log g of 4.32±\pm0.09. At a mean orbital separation of 1.046−0.015+0.019^{+0.019}_{-0.015} AU, this small planet is well within the optimistic habitable zone of its star (recent Venus/early Mars), experiencing only 10% more flux than Earth receives from the Sun today, and slightly outside the conservative habitable zone (runaway greenhouse/maximum greenhouse). The star is slightly larger and older than the Sun, with a present radius of 1.11−0.09+0.15^{+0.15}_{-0.09} R⊙_\odot and an estimated age of 6 Gyr. Thus, Kepler-452b has likely always been in the habitable zone and should remain there for another 3 Gyr.Comment: 19 pages, 16 figure

    Modeling Chronic Traumatic Encephalopathy: The Way Forward for Future Discovery

    Get PDF
    Despite the extensive media coverage associated with the diagnosis of chronic traumatic encephalopathy (CTE), our fundamental understanding of the disease pathophysiology remains in its infancy. Only recently have scientific laboratories and personnel begun to explore CTE pathophysiology through the use of preclinical models of neurotrauma. Some studies have shown the ability to recapitulate some aspects of CTE in rodent models, through the use of various neuropathologic, biochemical, and/or behavioral assays. Many questions related to CTE development however remain unanswered. These include the role of impact severity, the time interval between impacts, the age at which impacts occur, and the total number of impacts sustained. Other important variables such as the location of impacts, character of impacts, and effect of environment/lifestyle and genetics also warrant further study. In this work we attempt to address some of these questions by exploring work previously completed using single and repetitive injury paradigms. Despite some models producing some deficits similar to CTE symptoms, it is clear that further studies are required to understand the development of neuropathological and neurobehavioral features consistent with CTE-like features in rodents. Specifically, acute and chronic studies are needed that characterize the development of tau-based pathology

    Association of Blood Biomarkers With Acute Sport-Related Concussion in Collegiate Athletes: Findings From the NCAA and Department of Defense CARE Consortium

    Get PDF
    Importance: There is potential scientific and clinical value in validation of objective biomarkers for sport-related concussion (SRC). Objective: To investigate the association of acute-phase blood biomarker levels with SRC in collegiate athletes. Design, Setting, and Participants: This multicenter, prospective, case-control study was conducted by the National Collegiate Athletic Association (NCAA) and the US Department of Defense Concussion Assessment, Research, and Education (CARE) Consortium from February 20, 2015, to May 31, 2018, at 6 CARE Advanced Research Core sites. A total of 504 collegiate athletes with concussion, contact sport control athletes, and non-contact sport control athletes completed clinical testing and blood collection at preseason baseline, the acute postinjury period, 24 to 48 hours after injury, the point of reporting being asymptomatic, and 7 days after return to play. Data analysis was conducted from March 1 to November 30, 2019. Main Outcomes and Measures: Glial fibrillary acidic protein (GFAP), ubiquitin C-terminal hydrolase-L1 (UCH-L1), neurofilament light chain, and tau were quantified using the Quanterix Simoa multiplex assay. Clinical outcome measures included the Sport Concussion Assessment Tool-Third Edition (SCAT-3) symptom evaluation, Standardized Assessment of Concussion, Balance Error Scoring System, and Brief Symptom Inventory 18. Results: A total of 264 athletes with concussion (mean [SD] age, 19.08 [1.24] years; 211 [79.9%] male), 138 contact sport controls (mean [SD] age, 19.03 [1.27] years; 107 [77.5%] male), and 102 non-contact sport controls (mean [SD] age, 19.39 [1.25] years; 82 [80.4%] male) were included in the study. Athletes with concussion had significant elevation in GFAP (mean difference, 0.430 pg/mL; 95% CI, 0.339-0.521 pg/mL; P < .001), UCH-L1 (mean difference, 0.449 pg/mL; 95% CI, 0.167-0.732 pg/mL; P < .001), and tau levels (mean difference, 0.221 pg/mL; 95% CI, 0.046-0.396 pg/mL; P = .004) at the acute postinjury time point compared with preseason baseline. Longitudinally, a significant interaction (group × visit) was found for GFAP (F7,1507.36 = 16.18, P < .001), UCH-L1 (F7,1153.09 = 5.71, P < .001), and tau (F7,1480.55 = 6.81, P < .001); the interaction for neurofilament light chain was not significant (F7,1506.90 = 1.33, P = .23). The area under the curve for the combination of GFAP and UCH-L1 in differentiating athletes with concussion from contact sport controls at the acute postinjury period was 0.71 (95% CI, 0.64-0.78; P < .001); the acute postinjury area under the curve for all 4 biomarkers combined was 0.72 (95% CI, 0.65-0.79; P < .001). Beyond SCAT-3 symptom score, GFAP at the acute postinjury time point was associated with the classification of athletes with concussion from contact controls (β = 12.298; 95% CI, 2.776-54.481; P = .001) and non-contact sport controls (β = 5.438; 95% CI, 1.676-17.645; P = .005). Athletes with concussion with loss of consciousness or posttraumatic amnesia had significantly higher levels of GFAP than athletes with concussion with neither loss of consciousness nor posttraumatic amnesia at the acute postinjury time point (mean difference, 0.583 pg/mL; 95% CI, 0.369-0.797 pg/mL; P < .001). Conclusions and Relevance: The results suggest that blood biomarkers can be used as research tools to inform the underlying pathophysiological mechanism of concussion and provide additional support for future studies to optimize and validate biomarkers for potential clinical use in SRC
    • …
    corecore