10 research outputs found

    Interactions of uroseptic escherichia coli with renal (A-498) and gastrointestinal (HT-29) cell lines

    No full text
    We investigated the ability of Escherichia coli isolated from septic patients with urinary tract infection (UTI) to translocate through the gastrointestinal (GI) tract of the same patients using cell-culture models. Forty-seven hospitalized patients with urosepsis were included in this study. E. coli was isolated from their urine and blood (total 94 isolates) and investigated for genetic relatedness and interaction with the cell lines A-498 and HT-29. An initial comparison of the strains isolated from urine and blood showed that 44 out of 47 patients (94 %) had identical strains in their blood and urine. The blood isolates adhered to both cell lines, although their rate of adherence to A-498 cells was significantly higher than that to HT-29 cells (5.8 +/- 3.8 per cell vs 2.8 +/- 1.9;

    Key rules of life and the fading cryosphere: Impacts in alpine lakes and streams

    No full text
    Alpine regions are changing rapidly due to loss of snow and ice in response to ongoing climate change. While studies have documented ecological responses in alpine lakes and streams to these changes, our ability to predict such outcomes is limited. We propose that the application of fundamental rules of life can help develop necessary predictive frameworks. We focus on four key rules of life and their interactions: the temperature dependence of biotic processes from enzymes to evolution; the wavelength dependence of the effects of solar radiation on biological and ecological processes; the ramifications of the non-arbitrary elemental stoichiometry of life; and maximization of limiting resource use efficiency across scales. As the cryosphere melts and thaws, alpine lakes and streams will experience major changes in temperature regimes, absolute and relative inputs of solar radiation in ultraviolet and photosynthetically active radiation, and relative supplies of resources (e.g., carbon, nitrogen, and phosphorus), leading to nonlinear and interactive effects on particular biota, as well as on community and ecosystem properties. We propose that applying these key rules of life to cryosphere-influenced ecosystems will reduce uncertainties about the impacts of global change and help develop an integrated global view of rapidly changing alpine environments. However, doing so will require intensive interdisciplinary collaboration and international cooperation. More broadly, the alpine cryosphere is an example of a system where improving our understanding of mechanistic underpinnings of living systems might transform our ability to predict and mitigate the impacts of ongoing global change across the daunting scope of diversity in Earth's biota and environments

    Building Public Services Through the Nonprofit Sector: Exploring the Risks of Rapid, Government Funded Growth in Human Service Organizations

    No full text

    Proceedings of the OHBM Brainhack 2021

    No full text
    The global pandemic presented new challenges and op-portunities for organizing conferences, and OHBM 2021was no exception. The OHBM Brainhack is an event thatoccurs just prior to the OHBM meeting, typically in-per-son, where scientists of all levels of expertise and interestgather to work and learn together for a few days in a col-laborative hacking-style environment on projects of com-mon interest (1). Building off the success of the OHBM2020 Hackathon (2), the 2021 Open Science SpecialInterest Group came together online to organize a largecoordinated Brainhack event that would take place overthe course of 4 days. The OHBM 2021 Brainhack eventwas organized along two guiding principles, providinga highly inclusive collaborative environment for inter-action between scientists across disciplines and levelsof expertise to push forward important projects thatneed support, also known as the “Hack-Track” of theBrainhack. The second aim of the OHBM Brainhack is toempower scientists to improve the quality of their sci-entific endeavors by providing high-quality hands-ontraining on best practices in open-science approaches.This is best exemplified by the training events providedby the “Train-Track” at the OHBM 2021 Brainhack. Here,we briefly explain both of these elements of the OHBM2021 Brainhack, before continuing on to the Brainhackproceedings

    Phenotypic expansion of CACNA1C-associated disorders to include isolated neurological manifestations

    No full text
    International audiencePurpose:CACNA1C encodes the alpha-1-subunit of a voltage-dependent L-type calcium channel expressed in human heart and brain. Heterozygous variants in CACNA1C have previously been reported in association with Timothy syndrome and long QT syndrome. Several case reports have suggested that CACNA1C variation may also be associated with a primarily neurological phenotype.Methods:We describe 25 individuals from 22 families with heterozygous variants in CACNA1C, who present with predominantly neurological manifestations.Results:Fourteen individuals have de novo, nontruncating variants and present variably with developmental delays, intellectual disability, autism, hypotonia, ataxia, and epilepsy. Functional studies of a subgroup of missense variants via patch clamp experiments demonstrated differential effects on channel function in vitro, including loss of function (p.Leu1408Val), neutral effect (p.Leu614Arg), and gain of function (p.Leu657Phe, p.Leu614Pro). The remaining 11 individuals from eight families have truncating variants in CACNA1C. The majority of these individuals have expressive language deficits, and half have autism.Conclusion:We expand the phenotype associated with CACNA1C variants to include neurodevelopmental abnormalities and epilepsy, in the absence of classic features of Timothy syndrome or long QT syndrome

    Global COVID-19 lockdown highlights humans as both threats and custodians of the environment

    Get PDF
    The global lockdown to mitigate COVID-19 pandemic health risks has altered human interactions with nature. Here, we report immediate impacts of changes in human activities on wildlife and environmental threats during the early lockdown months of 2020, based on 877 qualitative reports and 332 quantitative assessments from 89 different studies. Hundreds of reports of unusual species observations from around the world suggest that animals quickly responded to the reductions in human presence. However, negative effects of lockdown on conservation also emerged, as confinement resulted in some park officials being unable to perform conservation, restoration and enforcement tasks, resulting in local increases in illegal activities such as hunting. Overall, there is a complex mixture of positive and negative effects of the pandemic lockdown on nature, all of which have the potential to lead to cascading responses which in turn impact wildlife and nature conservation. While the net effect of the lockdown will need to be assessed over years as data becomes available and persistent effects emerge, immediate responses were detected across the world. Thus initial qualitative and quantitative data arising from this serendipitous global quasi-experimental perturbation highlights the dual role that humans play in threatening and protecting species and ecosystems. Pathways to favorably tilt this delicate balance include reducing impacts and increasing conservation effectiveness
    corecore