27 research outputs found

    Проектування високонапірного робочого колеса багатоступінчатих насосів для об’єктів нафтовидобутку

    Get PDF
    В статті запропоновано іноваційний метод підвищення напірності ступеня багатоступінчатого насоса до 20% з використанням методу чисельного дослідження.В статье предложен инновационный метод повышения напирности степени многоступенчатого насоса до 20% с использованием метода численного исследования.The paper proposed an innovative method of increasing of the multistage pump head to 20% using the method of numerical investigation

    The Genomes of the Fungal Plant Pathogens Cladosporium fulvum and Dothistroma septosporum Reveal Adaptation to Different Hosts and Lifestyles But Also Signatures of Common Ancestry.

    Get PDF
    We sequenced and compared the genomes of the Dothideomycete fungal plant pathogensCladosporium fulvum (Cfu) (syn. Passalora fulva) and Dothistroma septosporum (Dse) that are closely related phylogenetically, but have different lifestyles and hosts. Although both fungi grow extracellularly in close contact with host mesophyll cells, Cfu is a biotroph infecting tomato, while Dse is a hemibiotroph infecting pine. The genomes of these fungi have a similar set of genes (70% of gene content in both genomes are homologs), but differ significantly in size (Cfu \u3e61.1-Mb; Dse 31.2-Mb), which is mainly due to the difference in repeat content (47.2% in Cfu versus 3.2% in Dse). Recent adaptation to different lifestyles and hosts is suggested by diverged sets of genes. Cfu contains an α-tomatinase gene that we predict might be required for detoxification of tomatine, while this gene is absent in Dse. Many genes encoding secreted proteins are unique to each species and the repeat-rich areas in Cfu are enriched for these species-specific genes. In contrast, conserved genes suggest common host ancestry. Homologs of Cfu effector genes, including Ecp2 and Avr4, are present in Dse and induce a Cf-Ecp2- and Cf-4-mediated hypersensitive response, respectively. Strikingly, genes involved in production of the toxin dothistromin, a likely virulence factor for Dse, are conserved in Cfu, but their expression differs markedly with essentially no expression by Cfu in planta. Likewise, Cfu has a carbohydrate-degrading enzyme catalog that is more similar to that of necrotrophs or hemibiotrophs and a larger pectinolytic gene arsenal than Dse, but many of these genes are not expressed in planta or are pseudogenized. Overall, comparison of their genomes suggests that these closely related plant pathogens had a common ancestral host but since adapted to different hosts and lifestyles by a combination of differentiated gene content, pseudogenization, and gene regulation

    An Integrated Omics Approach Uncovers the Novel Effector Ecp20-2 Required for Full Virulence of Cladosporium fulvum on Tomato

    No full text
    The fungus Cladosporium fulvum causes the leaf mould in tomatoes. During the colonization of the host, it secretes plenty of effector proteins into the plant apoplast to suppress the plant’s immune system. Here, we characterized and functionally analyzed the Ecp20-2 gene of C. fulvum using combined omics approaches. RNA-sequencing of susceptible tomato plants inoculated with C. fulvum race 0WU showed strongly induced expression of the Ecp20-2 gene. Strong upregulation of expression of the Ecp20-2 gene was confirmed by qPCR, and levels were comparable to those of other known effectors of C. fulvum. The Ecp20-2 gene encodes a small secreted protein of 149 amino acids with a predicted signal peptide of 17 amino acids. Mass spectrometry of apoplastic fluids from infected tomato leaves revealed the presence of several peptides originating from the Ecp20-2 protein, indicating that the protein is secreted and likely functions in the apoplast. In the genome of C. fulvum, Ecp20-2 is surrounded by various repetitive elements, but no allelic variation was detected in the coding region of Ecp20-2 among 120 C. fulvum isolates collected in Japan. Δecp20-2 deletion mutants of strain 0WU of C. fulvum showed decreased virulence, supporting that Ecp20-2 is an effector required for full virulence of the fungus. Virulence assays confirmed a significant reduction of fungal biomass in plants inoculated with Δecp20-2 mutants compared to those inoculated with wild-type, Δecp20-2-complemented mutants, and ectopic transformants. Sequence similarity analysis showed the presence of Ecp20-2 homologs in the genomes of several Dothideomycete fungi. The Ecp20-2 protein shows the best 3D homology with the PevD1 effector of Verticillium dahliae, which interacts with and inhibits the activity of the pathogenesis-related protein PR5, which is involved in the immunity of several host plants

    Transcriptome and proteome analyses of proteases in biotroph fungal pathogen Cladosporium fulvum

    No full text
    Proteases are key components of the hydrolytic enzyme arsenal employed by fungal pathogens to invade their host plants. The recent advances in -omics era have facilitated identification of functional proteases involved in plant-fungus interactions. By comparison of the publically available sequences of fungal genomes we found that the number of protease genes present in the genome of Cladosporium fulvum, a biotrophic tomato pathogen, is comparable with that of hemibiotrophs. To identify host plant inducible protease genes and their products, we performed transcriptome and proteome analyses of C. fulvumin vitro and in planta by means of RNA-Seq/RT-qPCR and mass spectrometry. Transcriptome data showed that 14 out of the 59 predicted proteases are expressed during in vitro and in planta growth of C. fulvum, of which nine belong to serine proteases S8 and S10 and the rest belong to metallo- and aspartic proteases. Mass spectrometry confirmed the presence of six proteases at proteome level during plant infection. Expression of limited number of proteases by C. fulvum might sustain biotrophic growth and benefits its stealth pathogenesis

    Transcriptome and proteome analyses of proteases in biotroph fungal pathogen Cladosporium fulvum

    No full text
    Proteases are key components of the hydrolytic enzyme arsenal employed by fungal pathogens to invade their host plants. The recent advances in -omics era have facilitated identification of functional proteases involved in plant-fungus interactions. By comparison of the publically available sequences of fungal genomes we found that the number of protease genes present in the genome of Cladosporium fulvum, a biotrophic tomato pathogen, is comparable with that of hemibiotrophs. To identify host plant inducible protease genes and their products, we performed transcriptome and proteome analyses of C. fulvumin vitro and in planta by means of RNA-Seq/RT-qPCR and mass spectrometry. Transcriptome data showed that 14 out of the 59 predicted proteases are expressed during in vitro and in planta growth of C. fulvum, of which nine belong to serine proteases S8 and S10 and the rest belong to metallo- and aspartic proteases. Mass spectrometry confirmed the presence of six proteases at proteome level during plant infection. Expression of limited number of proteases by C. fulvum might sustain biotrophic growth and benefits its stealth pathogenesis.</p

    NADP-MALIC ENZYME 1 Affects Germination after Seed Storage in Arabidopsis thaliana

    No full text
    Aging decreases the quality of seeds and results in agricultural and economic losses. The damage that occurs at the biochemical level can alter the seed physiological status. Although loss of viability has been investigated frequently, little information exists on the molecular and biochemical factors involved in seed deterioration and loss of viability. Oxidative stress has been implicated as a major contributor to seed deterioration, and several pathways are involved in protection against this. In this study, we show that seeds of Arabidopsis thaliana lacking a functional NADP-MALIC ENZYME 1 (NADP-ME1) have reduced seed viability relative to the wild type. Seeds of the NADP-ME1 loss-of-function mutant display higher levels of protein carbonylation than those of the wild type. NADP-ME1 catalyzes the oxidative decarboxylation of malate to pyruvate with the simultaneous production of CO2 and NADPH. Upon seed imbibition, malate and amino acids accumulate in embryos of aged seeds of the NADP-ME1 loss-of-function mutant compared with those of the wild type. NADP-ME1 expression is increased in imbibed aged as compared with non-aged seeds. NADP-ME1 activity at testa rupture promotes normal germination of aged seeds. In seedlings of aged seeds, NADP-ME1 is specifically active in the root meristematic zone. We propose that NADP-ME1 activity is required for protecting seeds against oxidation during seed dry storage

    Disruption of <i>Cladosporium fulvum</i> gene clusters by transposable elements.

    No full text
    <p>(<b>A</b>) The <i>HPS1</i> and (<b>B</b>) <i>NPS1</i> genes in <i>C. fulvum</i> are orthologs of core genes that belong to conserved gene clusters in related fungal species. Genes are represented as arrows, indicating their orientation. Black arrows are genes with conserved orientation. Dark grey arrows are genes in the gene clusters that have undergone rearrangements. Light grey arrows are genes that border the gene cluster. Triangles represent transposable elements. Representation of genes is not to scale.</p

    Expression profile of <i>Cladosporium fulvum</i> secondary metabolism functional core genes.

    No full text
    <p>Expression profiles were measured by RT-qrtPCR using RNA isolated from mycelium grown in diverse <i>in vitro</i> growth conditions: PDB, B5 with different pHs, B5 without carbon source (B5-C), B5 without nitrogen source (B5-N), B5 without FeCl<sub>3</sub> (B5-Fe), stationary phase (B5-12days) and autoclaved tomato leaves; and from tomato plants inoculated with the sequenced <i>C. fulvum</i> race 0WU strain from 0 to 16 days post-inoculation (dpi). Results are shown relative to the actin gene expression according to the E<sup>−ΔCt</sup> method, where E is the efficiency of a given primer pair. Tubulin gene was used as a control for calibration and the effector genes <i>Avr4</i> and <i>Avr9</i> were used as positive controls for the tomato infection experiment. The grey dotted line indicates the tubulin expression level. Values are the mean of three biological repeats and the error bars represent standard deviations (SD). (<b>A</b>) Only six genes show expression during <i>in vitro</i> growth, while (<b>B</b>) two genes are down-regulated during colonization of tomato. Pictures of tomato infected by a GFP-tagged <i>C. fulvum</i> strain are shown below to indicate the development of the fungus at the different time points of infection. Expression in each <i>in vitro</i> condition was compared to that in B5 pH4 medium using multiple t-tests, not assuming consistent SD, correcting for multiple comparisons with the Holm-Sidak method. For each gene, each <i>in planta</i> time point was compared to the previous one using a Two-way ANOVA followed by a multiple comparison test corrected with the Holm-Sidak method. All statistical tests were performed at the alpha significance threshold of 0.05. Red asterisks indicate significant differences only (* p<0.01; ** p<0.001; *** p<0.0001).</p

    <i>Cladosporium fulvum</i> secondary metabolite profiling.

    No full text
    <p>Secondary metabolites (SMs) were extracted from <i>in vitro</i> liquid cultures in PDB and B5 media. Non-inoculated media served as negative controls. Culture filtrate and mycelium were separated by filtration prior to SM extraction and LC-MS analysis. Cladofulvin (retention time ca. 8.6 min) was the only SM detected in these samples. The peak at ca. 11.6 min corresponds to the fatty acid linoleic acid.</p
    corecore