40 research outputs found

    Hydrologic Response of a Montane Meadow from Conifer Removal and Upslope Forest Thinning

    Get PDF
    This study evaluates the hydrologic response of restoration of a montane meadow by removal of encroached Pinus contorta and thinning of the adjacent forest. It is now a follow-up with four years of post-restoration data, on a previous analysis of a hydrologic response of the same meadow one year following restoration. A hydrologic change was evaluated through a statistical comparison of soil moisture and depth to groundwater between the restored Marian Meadow and a Control Meadow. Meadow water budgets and durations of water table depths during the growing season were evaluated. The four years following restoration of Marian Meadow had an increase in volumetric soil moisture during the wet season, but decreased soil moisture during the dry season. An average decrease in depth to groundwater of 0.15 m was found, which is consistent with the first-year post-restoration. The water budget confirms the first-year results that the hydrologic change following removal of encroached conifers was primarily due to a reduction of vegetation interception capture. There was no measurable difference in depth to groundwater or soil moisture following the upslope forest thinning likely due to the low level of forest removal with 2.8 m2/hectare reduction of the forest basal area. The cost of restoration to water gained was 0.69USD/1000L(0.69 USD/1000 L (2.62 USD/1000 gal.)

    Characterizing the 410 km Discontinuity Low‐Velocity Layer Beneath the LA RISTRA Array in the North American Southwest

    Get PDF
    Receiver functions recorded by the 54-station 920 km long Program for Array Seismic Studies of the Continental Lithosphere–Incorporated Research Institutions for Seismology Colorado Plateau/Rio Grande Rift Seismic Transect Experiment (LA RISTRA) line array display a pervasive negative polarity P to S conversion (Pds) arrival preceding the positive polarity 410 km discontinuity arrival. These arrivals are modeled as a low-velocity layer atop the 410 km discontinuity (410-LVL) and are inverted for a velocity profile via a grid search using a five-parameter linear gradient velocity model. Model parameter likelihood and correlations are assessed via calculation of one- and two-dimensional marginal posterior probability distributions. The maximum likelihood model parameter values found are top velocity gradient thickness of 0.0 km with a 4.6% (−0.22 km/s) shear velocity reduction, a 19.8 km constant velocity layer, and bottom gradient thickness of 25.0 km with a 3.5% (+0.17 km/s) shear velocity increase. The estimated mean thickness of the 410-LVL is 32.3 km. The top gradient of the 410-LVL is sharp within vertical resolution limits of P to S conversion (km), and the diffuse 410 km velocity gradient is consistent with hydration of the olivine-wadsleyite phase transformation. The 410-LVL is interpreted as a melt layer created by the Transition Zone Water Filter model. Two secondary observations are found: (1) the 410-LVL is absent from the SE end of the array and (2) an intermittent negative polarity P525s arrival is observed. We speculate that upper mantle shear velocity anomalies above the 410 km discontinuity may manifest Rayleigh-Taylor instabilities nucleated from the 410-LVL melt layer that are being shed upward on time scales of tens of millions of years

    Assessing Stream-Aquifer Connectivity in a Coastal California Watershed

    Get PDF
    We report the results of field and laboratory investigations of stream-aquifer interactions in a watershed along the California coast to assess the impact of groundwater pumping for irrigation on stream flows. The methods used include subsurface sediment sampling using direct-push drilling, laboratory permeability and particle size analyses of sediment, piezometer installation and instrumentation, stream discharge and stage monitoring, pumping tests for aquifer characterization, resistivity surveys, and long-term passive monitoring of stream stage and groundwater levels. Spectral analysis of long-term water level data was used to assess correlation between stream and groundwater level time series data. The investigations revealed the presence of a thin low permeability silt-clay aquitard unit between the main aquifer and the stream. This suggested a three layer conceptual model of the subsurface comprising unconfined and confined aquifers separated by an aquitard layer. This was broadly confirmed by resistivity surveys and pumping tests, the latter of which indicated the occurrence of leakage across the aquitard. The aquitard was determined to be 2–3 orders of magnitude less permeable than the aquifer, which is indicative of weak stream-aquifer connectivity and was confirmed by spectral analysis of stream-aquifer water level time series. The results illustrate the importance of site-specific investigations and suggest that even in systems where the stream is not in direct hydraulic contact with the producing aquifer, long-term stream depletion can occur due to leakage across low permeability units. This has implications for management of stream flows, groundwater abstraction, and water resources management during prolonged periods of drought

    The Mantle Transition Zone Beneath West Antarctica: Seismic Evidence for Hydration and Thermal Upwellings

    Get PDF
    Although prior work suggests that a mantle plume is associated with Cenozoic rifting and volcanism in West Antarctica, the existence of a plume remains conjectural. Here we use P wave receiver functions (PRFs) from the Antarctic POLENET array to estimate mantle transition zone thickness, which is sensitive to temperature perturbations, throughout previously unstudied parts of West Antarctica. We obtain over 8000 high-quality PRFs using an iterative, time domain deconvolution method filtered with a Gaussian width of 0.5 and 1.0, corresponding to frequencies less than ∼0.24 and ∼0.48 Hz, respectively. Single-station and common conversion point stacks, migrated to depth using the AK135 velocity model, indicate that mantle transition zone thickness throughout most of West Antarctica does not differ significantly from the global average, except in two locations; one small region exhibits a vertically thinned (210 ± 15 km) transition zone beneath the Ruppert Coast of Marie Byrd Land and another laterally broader region shows slight, vertical thinning (225 ± 25 km) beneath the Bentley Subglacial Trench. We also observe the 520 discontinuity and a prominent negative peak above the mantle transition zone throughout much of West Antarctica. These results suggest that the mantle transition zone may be hotter than average in two places, possibly due to upwelling from the lower mantle, but not broadly across West Antarctica. Furthermore, we propose that the transition zone may be hydrated due to \u3e100 million years of subduction beneath the region during the early Mesozoic

    A sporadic low‐velocity layer atop the western U.S. mantle transition zone and short‐wavelength variations in transition zone discontinuities

    Get PDF
    Teleseismic receiver function analysis of data from six dense arrays in the western U.S. is used to investigate mantle transition zone (MTZ) discontinuities and the prevalence of a low‐velocity layer atop the 410 km discontinuity (410‐LVL). Negative polarity Ps arrivals indicative of a low‐velocity layer with a top 25–60 km above the 410 are identified in 8–11 out of 18 stacks of receiver functions from highly sampled back azimuth corridors. The 410‐LVL is interpreted as partial melt resulting from upwelling of hydrated mantle across a water solubility contrast at the 410. The 669 km mean depth of the 660 km discontinuity (660) and the magnitude of 660 topography suggest variable hydration, locally approaching saturation, in addition to \u3e150 K lateral temperature variations beneath five arrays. Mean amplitudes of P410s and P660s increase monotonically with period from 2 to 10 s; however, greater variations are observed in the frequency dependence of P410s compared to P660s implying 410 thickness is more heterogeneous. Variable 410 thickness is attributed to changes in hydration modulating the width of the olivine‐to-wadsleyite transition interval. Frequency dependence of P660s amplitudes suggests a broad velocity gradient consistent with multivariate phase changes in the olivine and garnet systems. Sporadic detection of the 410‐LVL, the magnitude and length scales of MTZ discontinuity topography, and inferred variations in hydration support the occurrence of vigorous small‐scale convection in the western U.S. mantle. Comparison of receiver functions with body wave tomography suggests small‐scale convection driven by sinking slab segments and lithospheric instabilities contributes to the intermittent nature of the 410‐LVL

    J Mol Endocrinol

    No full text
    corecore