44 research outputs found

    Investigation into the Effect of Sulfate and Borate Incorporation on the Structure and Properties of SrFeO3-δ

    Get PDF
    In this paper, we demonstrate the successful incorporation of sulfate and borate into SrFeO3-δ, and characterise the effect on the structure and conductivity, with a view to possible utilisation as a cathode material in Solid Oxide Fuel Cells. The incorporation of low levels of sulfate/borate is sufficient to cause a change from a tetragonal to a cubic cell. Moreover, whereas heat treatment of undoped SrFeO3-δ under N2 leads to a transformation to brownmillerite Sr2Fe2O5 with oxygen vacancy ordering, the sulfate/borate-doped samples remain cubic under the same conditions. Thus, sulfate/borate doping appears to be successful in introducing oxide ion vacancy disorder in this system

    Upcycling of low value end-of-life cathode material into next generation cathode materials

    Get PDF
    The increase in the use of electric vehicles (EVs) will ultimately lead to an increase in the number of end-of-life lithium-ion batteries (LIBs) that need to be recycled. A particular challenge concerns how to deal with low value cathodes, such as LiMn2O4 (LMO). To this end, this paper investigates recycling cathode material from an end-of-life Gen 1 Nissan Leaf (2011 model, 40 000 miles) which contains a mixture of spinel (LMO) and a Ni-rich layered oxide (LO). Citric acid was employed to selectively leach LMO into solution while leaving the remaining LO as a solid. The citric acid also acts as a delamination agent to remove the remaining LO from the Al current collector. The LMO was then recovered from solution and upcycled to form new cathode materials. Ni-doping of the solution allowed the synthesis of the high voltage cathode LiMn1.5Ni0.5O4 (LMNO) which is attracting commercial interest. Disordered rocksalt compounds Li4Mn2O5 and Li2MnO2.25F were also synthesised and gave high specific discharge capacities of 293 and 279 mA h g−1 respectively. This proof of concept work demonstrates a method to upcycle end-of-life cathode material into next generation cathode materials

    Separation of nickel from cobalt and manganese in lithium ion batteries using deep eutectic solvents

    Get PDF
    The authors would like to thank the Faraday Institution (grant codes FIRG005 and FIRG006) for funding (Project website https://relib.org.uk). This research also received funding from the European Commission's H2020 – Marie Sklodowska Curie Actions (MSCA) − Innovative Training Networks within the SOCRATES project under the grant agreement no. 721385 (Project website: https://etn-socrates.eu).A cornerstone of the decarbonisation agenda is the use of lithium ion batteries, particularly for electric vehicles. It is essential that effective recycling protocols are developed and this includes the ability to selectively digest and recover components of the cathode materials, most commonly including manganese, cobalt and nickel. This study shows a method by which nickel oxide can be efficiently separated from cobalt and manganese oxides using an oxalic acid-based deep eutectic solvent. The subsequent addition of water to the pregnant solution enables the co-precipitation of cobalt and manganese oxalates. This permits a route to the reformulation of the active materials from high cobalt and manganese content to high nickel content.Publisher PDFPeer reviewe

    Mechanism of carbon dioxide and water incorporation in Ba2TiO4: A joint computational and experimental study

    Get PDF
    © 2017 American Chemical Society. CO 2 incorporation in solids is attracting considerable interest in a range of energy-related areas. Materials degradation through CO 2 incorporation is also a critical problem with some fuel cell materials, particularly for proton conducting ceramic fuel cells. Despite this importance, the fundamental understanding of the mechanism of CO 2 incorporation is lacking. Furthermore, the growing use of lower temperature sol gel routes for the design and synthesis of new functional materials may be unwittingly introducing significant residual carbonate and hydroxyl ions into the material, and so studies such as the one reported here investigating the incorporation of carbonate and hydroxyl ions are important, to help explain how this may affect the structure and properties. This study on Ba 2 TiO 4 suggests highly unfavorable intrinsic defect formation energies but comparatively low H 2 O and CO 2 incorporation energies, in accord with experimental findings. Carbonate defects are likely to form in both pristine and undoped Ba 2 TiO 4 systems, whereas those based on H 2 O will only form in systems containing other supporting defects, such as oxygen interstitials or vacancies. However, both hydroxyl and carbonate defects will trap oxide ion defects induced through doping, and the results from both experimental and modeling studies suggest that it is primarily the presence of carbonate that is responsible for stabilizing the high temperature α′-phase at lower temperatures

    Roadmap for a sustainable circular economy in lithium-ion and future battery technologies

    Get PDF
    The market dynamics, and their impact on a future circular economy for lithium-ion batteries (LIB), are presented in this roadmap, with safety as an integral consideration throughout the life cycle. At the point of end-of-life (EOL), there is a range of potential options—remanufacturing, reuse and recycling. Diagnostics play a significant role in evaluating the state-of-health and condition of batteries, and improvements to diagnostic techniques are evaluated. At present, manual disassembly dominates EOL disposal, however, given the volumes of future batteries that are to be anticipated, automated approaches to the dismantling of EOL battery packs will be key. The first stage in recycling after the removal of the cells is the initial cell-breaking or opening step. Approaches to this are reviewed, contrasting shredding and cell disassembly as two alternative approaches. Design for recycling is one approach that could assist in easier disassembly of cells, and new approaches to cell design that could enable the circular economy of LIBs are reviewed. After disassembly, subsequent separation of the black mass is performed before further concentration of components. There are a plethora of alternative approaches for recovering materials; this roadmap sets out the future directions for a range of approaches including pyrometallurgy, hydrometallurgy, short-loop, direct, and the biological recovery of LIB materials. Furthermore, anode, lithium, electrolyte, binder and plastics recovery are considered in order to maximise the proportion of materials recovered, minimise waste and point the way towards zero-waste recycling. The life-cycle implications of a circular economy are discussed considering the overall system of LIB recycling, and also directly investigating the different recycling methods. The legal and regulatory perspectives are also considered. Finally, with a view to the future, approaches for next-generation battery chemistries and recycling are evaluated, identifying gaps for research. This review takes the form of a series of short reviews, with each section written independently by a diverse international authorship of experts on the topic. Collectively, these reviews form a comprehensive picture of the current state of the art in LIB recycling, and how these technologies are expected to develop in the future

    2018 Research & Innovation Day Program

    Get PDF
    A one day showcase of applied research, social innovation, scholarship projects and activities.https://first.fanshawec.ca/cri_cripublications/1005/thumbnail.jp
    corecore