58 research outputs found

    Simulating the Impact of Cooperation and Management Strategies on Stress and Economic Performance

    Get PDF
    In this paper, we study the impact of the management evaluation strategies that are aimed at achieving a balance between rewarding the cooperative behavior of employees and their economic performance. We developed a model in the NetLogo simulation environment that incorporates many socioeconomic aspects such as the stress, effort, and productivity of employees as well as insights into managing cooperativeness and the performance of individual workers. We conducted a series of simulations, each representing a 10-year lifespan of an organization, and the results reveal that organizations achieve the highest performance when management prefers to reward the cooperative behavior of employees instead of performance. The detailed results are provided and discussed in the paper, as are the future directions that the research could take as well as possible extensions of the model presented

    The Prisoner's Dilemma in the Workplace: How Cooperative Behavior of Managers Influence Organizational Performance and Stress

    Get PDF
    The aim of the paper is to analyze the impact of cooperativeness of managers who occupy central positions in interaction networks on the performance and stress levels of a whole organization. To explore this relationship, a multi-parameter agent-based model is proposed which implements the Prisoner's Dilemma Game approach on a scale-free network in the NetLogo environment. A description of the socio-economic aspects and the key concepts implemented in the model are provided. Stability and correctness have been tested through a series of validation experiments, including sensitivity analysis. The source code is available for further exploration and testing. The simulations revealed that improving the stress resistance of all employees moderately increases organizational performance. Analyzing managers' roles showed that increasing only the stress resistance of managers does not account for significantly higher overall performance. However, a substantial increase in organizational performance and a decrease in stress levels are achieved when managers are unconditionally cooperative. This effect is stronger for the lowered stress resistance of employees. Therefore, the willingness of managers to cooperate under all circumstances can be a key factor in achieving better performance and building a more pleasant, stress-free working environment. This paper presents a model for analyzing cooperation, specifically in the organizational context, extending the Prisoner's Dilemma with novel concepts and mechanisms. While the results confirm the existing theories about the importance of central nodes in complex networks, they also provide further details on how the cooperative behavior of central nodes (i.e., the managers) might benefit the organization

    Gallium-free micromechanical sample preparation from ECAPed alluminium

    Get PDF
    Focused ion beam scanning electron microscopes (FIB-SEM) enable high precision site-specific material removal with practically no restriction on sample composition. Depending on the ion source (e.g. Ga+, Xe+), the rate of material removal differs significantly. In general, the design of Xe+ source allows using high ion beam currents that can be up to a few µA while maintaining beam quality and performance. However, the most relevant feature of Xe ions for this study is their non-metallic and inert nature which prevents any chemical interaction with the target material and formation of unwanted metallic compounds that alter the original properties of the sample that is being analyzed. Please click Additional Files below to see the full abstract

    Characterization of mechanically alloyed FeAlSi intermetallic powders

    Get PDF
    Powder metallurgy is very promising material production technology which allows to prepare the alloys that could hardly be manufactured by other processing route. Basic prerequisite to obtain the product of desired properties is the high quality of initial primary commodities, i.e. powders in the case of powder metallurgy. One of the available methods of powder preparation is so called mechanical alloying which starts from blended powder mixtures and allows production of homogeneous materials by severe deformation in a high-energy ball charge. This technology is especially suitable for brittle materials such as intermetallic alloys being developed for high-temperature and corrosive environments applications [1]. Please click Additional Files below to see the full abstract

    FRACTURE BEHAVIOR OF FeAlSi INTERMETALLICS

    Get PDF
    The study is devoted to the intermetallic alloy FeAl20Si20 (wt.%) with the potential applications in high temperature aggressive environments. The samples of the same chemical composition were prepared by spark plasma sintering from the different mechanically alloyed powders (pure elements and pre-alloyed powders). Differences in mechanical properties were characterized. Whereas no significant differences were found in hardness and Young´s modulus, fracture resistance was higher for the samples from pre-alloyed powders in which Palmqvist and lateral cracks were observed (contrary to the sample made of pure elements where only Palmqvist cracks were identified)

    Optymalizacja Procesu Walcowania Na Gorąco Aluminidku Fe-40at.%Al-Zr-B Na Podstawie Prób Laboratoryjnych

    Get PDF
    Use of the protective steel capsules enabled to manage the laboratory hot flat rolling of the extremely brittle as-cast aluminide Fe-40at.%Al-Zr-B with the total height reduction of almost 70 %. The hot rolling parameters were optimized to obtain the best combination of deformation temperature (from 1160°C up to 1240°C) and rolling speed (from 0.14 m·s−1 to 0.53 m·s−1). The resistance against cracking and refinement of the highly heterogeneous cast microstructure were the main criteria. Both experiments and mathematical simulations based on FEM demonstrated that it is not possible to exploit enhanced plasticity of the investigated alloy at low strain rates in the hot rolling process. The heat flux from the sample to the working rolls is so intensive at low rolling speed that even the protective capsule does not prevent massive appearance of the surface transverse cracking. The homogeneity and size of product’s grain was influenced significantly by temperature of deformation, whereas the effect of rolling speed was relatively negligible. The optimal forming parameters were found as rolling temperature 1200°C and the rolling speed 0.35 m·s−1. The effective technology of the iron aluminide Fe-40at.% Al-Zr-B preparation by simple processes of melting, casting and hot rolling was thus established and optimized.Zastosowanie ochronnych stalowych kapsuł pozwoliło na przeprowadzenie laboratoryjnego walcowania na gorąco pasm z niezwykle kruchego odlewanego aluminidku żelaza (stopu na osnowie fazy międzymetalicznej) Fe-40at.%Al-Zr-B, które umożliwiło redukcję wysokości o prawie 70%. Parametry walcowania na gorąco były dostosowywane celem uzyskania korzystnego zakresu temperatury odkształcenia (od 1160°C do 1240°C) oraz prędkości walcowania (od 0.14 m·s−1 do 0.53 m·s−1) dla otrzymania pasma bez pęknięć i rozdrobnienia silnie niejednorodnej mikrostruktury odlewu. Zarówno eksperymenty jak i matematyczne symulacje oparte na MES wykazały, że niemożliwe jest uzyskanie dobrej plastyczności badanego stopu przy niskich prędkościach odkształcenia podczas walcowania na gorąco. Strumień ciepła płynący z próbki na walce jest tak intensywny przy małej prędkości walcowania, że nawet kapsuła ochronna nie zapobiega pojawieniu się powierzchniowych pęknięć poprzecznych. Jednorodność i rozmiar ziarn w materiale silnie zależy od temperatury odkształcenia, podczas gdy wpływ prędkości walcowania jest relatywnie niewielki. Optymalne parametry kształtowania stopu to: temperatura 1200°C oraz prędkość walcowania 0.35 m·s−1. Skuteczna technologia przygotowania aluminidku żelaza Fe-40at.%Al-Zr-B w prostym procesie topienia, odlewania i walcowania na gorąco została w ten sposób ustalona i zoptymalizowana.Web of Science6031701169

    Low temperature a/b nanotwins in Ni50Mn25+xGa25x Heusler alloys

    Get PDF
    We have found low temperature a/b nanotwins having (110) twinning plane in a five-layered modulated martensite phase of Ni50Mn25+xGa25x (at. %) Heusler alloys and identified the particular region in phase diagram where the nanotwinning occurs. Evolution of the structure with decreasing temperature was studied by X-ray diffraction using single crystals exhibiting magnetic shape memory effect. The merging of (400) and (040) lines upon cooling for 2.6 < x < 3.5 indicated a/b nanotwinning originating from the refinement of initially coarse a/b twins. Refinement of the twins with decreasing temperature was observed directly using scanning electron microscopy. The prerequisite for nanotwinning is an extremely low twin boundary energy, which we estimated using first-principles calculations to be 0.16 meV/2. As the nanotwinning distorts the relation between the crystal lattice and the X-ray diffraction pattern, it should be taken into consideration in structural studies of Ni-Mn-Ga Heusler alloys

    Hybrid Laser Technology for Composite Coating and Medical Applications

    Get PDF
    Nano-composite layers were synthesised by pulsed laser deposition (PLD) combined with magnetron sputtering, ion gun modification and RF discharges, and by dual pulsed laser ablation using simultaneously two KrF excimer lasers and two targets. Diamond-like carbon (DLC), Cr-containing diamond-like carbon (Cr-DLC), silver-doped hydroxyapatite (Ag-HA) and silver doped 316L steel and Ti6Al4V were prepared by hybrid laser technologies for potential coating of medical implants. Growing DLC films were modified during the laser deposition (10 J cm–2) by ion bombardment. Energy of argon ions was in the range between 50 eV and 210 eV. Content of sp2 "graphitic" and sp 3 "diamond" bonds, doping, structure, mechanical and biocompatible properties were tested. Deposition arrangements and experiences are presente

    A multiscale study of hot-extruded CoNiGa ferromagnetic shape-memory alloys

    Get PDF
    Ferromagnetic shape-memory CoNiGa alloys have attracted much scientific interest due to their potential alternative use as high-temperature shape-memory alloys, bearing a high prospect for actuation and damping applications at elevated temperatures. Yet, polycrystalline CoNiGa, due to strong orientation dependence of transformation strains, suffers from intergranular fracture. Here, two multi-grain CoNiGa samples were prepared by a novel hot extrusion process that can promote favourable grain-boundary orientation distribution and improve the material's mechanical behaviour. The samples were investigated by multiple methods and their microstructural, magnetic, and mechanical properties are reported. It is found that a post-extrusion solutionising heat treatment leads to the formation of a two-phase oligocrystalline homogeneous microstructure consisting of an austenitic parent B2 phase and γ-CoNiGa precipitates. Reconstruction of the full 3D grain morphology revealed large, nearly spherical grains with no low-angle grain boundaries throughout the entire sample volume. The presence of γ precipitation affects the transformation behaviour of the samples, by lowering the martensitic transformation temperature, while, in conjunction with the oligocrystalline microstructure, it improves the ductility. Controlling the composition of the B2 matrix, as well as the phase fraction of the γ phase, is thus crucial for the optimal behaviour of the alloys
    corecore