437 research outputs found
Evaluation of a Multiparametric Immunofluorescence Assay for Standardization of Neuromyelitis Optica Serology
Background: Neuromyelitis optica (NMO) is a severely disabling autoimmune disorder of the central nervous system, which predominantly affects the optic nerves and spinal cord. In a majority of cases, NMO is associated with antibodies to aquaporin-4 (AQP4) (termed NMO-IgG). Aims: In this study, we evaluated a new multiparametric indirect immunofluorescence (IIF) assay for NMO serology. Methods: Sera from 20 patients with NMO, 41 patients with multiple sclerosis (MS), 30 healthy subjects, and a commercial anti-AQP4 IgG antibody were tested in a commercial composite immunofluorescence assay ("Neurology Mosaic 17"; Euroimmun, Germany), consisting of five different diagnostic substrates (HEK cells transfected with AQP4, non-transfected HEK cells, primate cerebellum, cerebrum, and optic nerve tissue sections). Results: We identified AQP4 specific and non-specific fluorescence staining patterns and established positivity criteria. Based on these criteria, this kit yielded a high sensitivity (95%) and specificity (100%) for NMO and had a significant positive and negative likelihood ratio (LR+ = ∞, LR- = 0.05). Moreover, a 100% inter- and intra-laboratory reproducibility was found. Conclusions: The biochip mosaic assay tested in this study is a powerful tool for NMO serology, fast to perform, highly sensitive and specific for NMO, reproducible, and suitable for inter-laboratory standardization as required for multi-centre clinical trials
Frequency and syndrome specificity of antibodies to aquaporin-4 in neurological patients with rheumatic disorders
BACKGROUND: A new autoantibody (termed NMO-IgG, or AQP4-Ab) has recently been described in patients with neuromyelitis optica (NMO) and its formes frustes, longitudinally extensive transverse myelitis (LETM) and recurrent optic neuritis (rON). However, AQP4-Ab has been found also in patients with co-existing rheumatic diseases such as systemic lupus erythematosus (SLE) or Sjogren's syndrome (SS), conditions which are characterized by broad, polyspecific B cell activation. OBJECTIVES: In this study, we aimed at evaluating the syndrome specificity and frequency of AQP4-Ab in patients with rheumatic diseases and neurological symptoms. METHODS: For this purpose, serum samples from 109 neurological patients with established connective tissue disorders (CTD) (n = 54), possible CTD (n = 42), or vasculitis (n = 13) were analysed for the presence of AQP4-Ab by a cell-based assay employing recombinant human AQP4. RESULTS: AQP4-Ab was detectable in 31/40 (78%) patients with CTD and NMO spectrum disorders (median titre, 1:1000) but in none of the samples obtained from patients with CTD or vasculitis and neurological disorders other than NMO, LETM, or rON (n = 69). CONCLUSION: The high syndrome specificity of the antibody for neuromyelitis optica spectrum disorders (NMOSDs) in patients with CTD supports the concept of AQP4-Ab being involved in the pathogenesis of these neurological conditions, and argues against AQP4-Ab simply being part of the polyclonal B cell activation generally associated with rheumatic diseases. Moreover, the finding that AQP4-Ab is present in patients with CTD and co-existing NMOSD with approximately the same frequency as in patients without CTD strengthens the case of CTD and AQP4-Ab positive NMOSD representing two co-existing yet distinct entities in the majority of patients
Contrasting disease patterns in seropositive and seronegative neuromyelitis optica: A multicentre study of 175 patients
BACKGROUND: The diagnostic and pathophysiological relevance of antibodies to aquaporin-4 (AQP4-Ab) in patients with neuromyelitis optica spectrum disorders (NMOSD) has been intensively studied. However, little is known so far about the clinical impact of AQP4-Ab seropositivity. OBJECTIVE: To analyse systematically the clinical and paraclinical features associated with NMO spectrum disorders in Caucasians in a stratified fashion according to the patients' AQP4-Ab serostatus. METHODS: Retrospective study of 175 Caucasian patients (AQP4-Ab positive in 78.3%). RESULTS: Seropositive patients were found to be predominantly female (p 1 myelitis attacks in the first year were identified as possible predictors of a worse outcome. CONCLUSION: This study provides an overview of the clinical and paraclinical features of NMOSD in Caucasians and demonstrates a number of distinct disease characteristics in seropositive and seronegative patients
Baló’s concentric sclerosis is immunologically distinct from multiple sclerosis: results from retrospective analysis of almost 150 lumbar punctures
Background: Baló’s concentric sclerosis (BCS) is a rare inflammatory demyelinating disorder of the central nervous system characterised by concentric layers of demyelination. It is unclear whether BCS is a variant of multiple sclerosis (MS) or a disease entity in its own right.
Objective: To compare the cerebrospinal fluid (CSF) features of BCS to those of MS.
Methods: Retrospective analysis of the CSF profile of all patients with BCS reported in the medical literature between 1980 and 2017.
Results: In total, the results of 146 lumbar punctures (LP) in 132 patients were analysed. The most striking finding was a lack of CSF-restricted oligoclonal bands (OCB) in 66% (56/85) of all LP in the total BCS group, in 74% (14/19) in the subgroup of patients with both MRI and histological evidence for BCS, and in 82% (18/22) in the subgroup of patients with highest radiological confidence (high MRI quality, ≥ 3 layers of demyelination). OCB disappeared in 1/2 initially OCB-positive patients. These findings are in stark contrast to MS, in which OCB are present in ≥ 95% of patients and are thought to remain stably detectable over the entire course of disease (p < 0.000001). OCB frequency was low both in ‘historic’ patients (1980–2009; 37%) and in more recent patients (2010–2017; 31%). OCB-positive and OCB-negative patients did not differ significantly with regard to age, sex, disease duration, number of Baló-like lesions on MRI, number of relapses, treatment or final outcome. In accordance with the high rate of OCB negativity, Link’s IgG index was negative in 63% of all tested samples (p < 0.000001 vs. MS). CSF pleocytosis was present in 28% (27/96; p < 0.000001 vs. MS) and elevated CSF total protein levels in 41% (31/76) of samples.
Conclusion: OCB and IgG index frequencies in BCS are much more similar to those reported in neuromyelitis optica or myelin oligodendrocyte glycoprotein antibody-associated encephalomyelitis than to those in MS. Our findings suggest that in most cases BCS-like lesions denote the presence of a disease entity immunologically distinct from MS. In addition, we provide data on the demographics, clinical course and radiological features of BCS based on the largest cohort analysed to date
evidence from cerebrospinal fluid analysis
Background The diagnosis of multiple sclerosis (MS) is currently based solely
on clinical and magnetic resonance imaging features. However,
histopathological studies have revealed four different patterns of lesion
pathology in patients diagnosed with MS, suggesting that MS may be a
pathologically heterogeneous syndrome rather than a single disease entity.
Objective The aim of this study was to investigate whether patients with
pattern I MS differ from patients with pattern II or III MS with regard to
cerebrospinal fluid (CSF) findings, especially with reference to intrathecal
IgG synthesis, which is found in most patients with MS but is frequently
missing in MS mimics such as aquaporin-4-IgG-positive neuromyelitis optica
spectrum disorders and myelin oligodendrocyte glycoprotein-IgG-positive
encephalomyelitis. Methods Findings from 68 lumbar punctures in patients who
underwent brain biopsy as part of their diagnostic work-up and who could be
unequivocally classified as having pattern I, pattern II or pattern III MS
were analysed retrospectively. Results Oligoclonal bands (OCBs) were present
in 88.2% of samples from pattern I MS patients but in only 27% of samples from
patients with pattern II or pattern III MS (P < 0.00004); moreover, OCBs were
present only transiently in some of the latter patients. A polyspecific
intrathecal IgG response to measles, rubella and/or varicella zoster virus
(so-called MRZ reaction) was previously reported in 60–80% of MS patients, but
was absent in all pattern II or III MS patients tested (P < 0.00001 vs.
previous cohorts). In contrast, the albumin CSF/serum ratio (QAlb), a marker
of blood–CSF barrier function, was more frequently elevated in samples from
pattern II and III MS patients (P < 0.002). Accordingly, QAlb values and
albumin and total protein levels were higher in pattern II and III MS samples
than in pattern I MS samples (P < 0.005, P < 0.009 and P < 0.006,
respectively). Conclusions Patients with pattern II or pattern III MS differ
significantly from patients with pattern I MS as well as from previous,
histologically non-classified MS cohorts with regard to both intrathecal IgG
synthesis and blood–CSF barrier function. Our findings strongly corroborate
the notion that pattern II and pattern III MS are entities distinct from
pattern I MS
‘Medusa head ataxia’: the expanding spectrum of Purkinje cell antibodies in autoimmune cerebellar ataxia. Part 3: Anti-Yo/CDR2, anti-Nb/AP3B2, PCA-2, anti-Tr/DNER, other antibodies, diagnostic pitfalls, summary and outlook
Serological testing for anti-neural autoantibodies is important in patients presenting with idiopathic cerebellar ataxia, since these autoantibodies may indicate cancer, determine treatment and predict prognosis. While some of them target nuclear antigens present in all or most CNS neurons (e.g. anti-Hu, anti-Ri), others more specifically target antigens present in the cytoplasm or plasma membrane of Purkinje cells (PC). In this series of articles, we provide a detailed review of the clinical and paraclinical features, oncological, therapeutic and prognostic implications, pathogenetic relevance, and differential laboratory diagnosis of the 12 most common PC autoantibodies (often referred to as ‘Medusa head antibodies’ due to their characteristic somatodendritic binding pattern when tested by immunohistochemistry). To assist immunologists and neurologists in diagnosing these disorders, typical high-resolution immunohistochemical images of all 12 reactivities are presented, diagnostic pitfalls discussed and all currently available assays reviewed. Of note, most of these antibodies target antigens involved in the mGluR1/calcium pathway essential for PC function and survival. Many of the antigens also play a role in spinocerebellar ataxia. Part 1 focuses on anti-metabotropic glutamate receptor 1-, anti-Homer protein homolog 3-, anti-Sj/inositol 1,4,5-trisphosphate receptor- and anti-carbonic anhydrase-related protein VIII-associated autoimmune cerebellar ataxia (ACA); part 2 covers anti-protein kinase C gamma-, anti-glutamate receptor delta-2-, anti-Ca/RhoGTPase-activating protein 26- and anti-voltage-gated calcium channel-associated ACA; and part 3 reviews the current knowledge on anti-Tr/delta notch-like epidermal growth factor-related receptor-, anti-Nb/AP3B2-, anti-Yo/cerebellar degeneration-related protein 2- and Purkinje cell antibody 2-associated ACA, discusses differential diagnostic aspects and provides a summary and outlook
Diagnostic criteria for primary autoimmune cerebellar ataxia—guidelines from an international task force on immune-mediated cerebellar ataxias
Aside from well-characterized immune-mediated ataxias with a clear trigger and/or association with specific neuronal antibodies, a large number of idiopathic ataxias are suspected to be immune mediated but remain undiagnosed due to lack of diagnostic biomarkers. Primary autoimmune cerebellar ataxia (PACA) is the term used to describe this later group. An International Task Force comprising experts in the field of immune ataxias was commissioned by the Society for Research on the Cerebellum and Ataxias (SRCA) in order to devise diagnostic criteria aiming to improve the diagnosis of PACA. The proposed diagnostic criteria for PACA are based on clinical (mode of onset, pattern of cerebellar involvement, presence of other autoimmune diseases), imaging findings (MRI and if available MR spectroscopy showing preferential, but not exclusive involvement of vermis) and laboratory investigations (CSF pleocytosis and/or CSF-restricted IgG oligoclonal bands) parameters. The aim is to enable clinicians to consider PACA when encountering a patient with progressive ataxia and no other diagnosis given that such consideration might have important therapeutic implications
- …