12 research outputs found

    Characterization of Klebsiella pneumoniae complex isolates from pigs and humans in farms in Thailand: population genomic structure, antibiotic resistance and virulence genes

    Get PDF
    Objectives: To define characteristics of Klebsiella pneumoniae complex (hereafter KP) isolates from healthy pigs, farm workers and their householdmembers in Thailand.Methods: A total of 839 individual rectal swabs from pigs on 164 farms and 271 faecal samples of humans working on pig farms and persons living in the same household in Khon Kaen, Thailand were screened for gut colonization by KP. Genomic sequenceswere investigated for antibiotic resistance and virulence genes. Phylogenetic analyseswere performed in addition to comparison with isolates from previous studies from Thailand.Results: KP was detected in approximately 50% of pig and human samples. In total, 253 KP isolates were obtained: 39% from pigs, 34% from farmers and 26% from individuals living on the same farm but without animal contact. MLST revealed high genetic diversity with 196 different STs distributed over four phylogroups (Kp1 to Kp4). Low prevalence of ESBL-KP (7.5%) and colistin-resistant KP (3.2%) was observed among pigs and humans. Remarkably, four convergent MDR and hypervirulent strains were observed: one from pigs (ST290) and three from humans [ST35, ST3415 (strain 90CP1), ST17 (strain 90CM2)]. Sharing of KP clones among pigs and humans was identified for some STs including ST4788, ST661, ST3541 and ST29.Conclusions: The study indicated a low prevalence of ESBL and mcr genes among KP isolated from pigs and healthy humans in Thailand and suggested the possibility of zoonotic transmission for a subset of circulating KP clones

    Spatio-Temporal Mutational Profile Appearances of Swedish SARS-CoV-2 during the Early Pandemic

    Get PDF
    Background: During the COVID-19 pandemic, the virus evolved, and we therefore aimed to provide an insight into which genetic variants were enriched, and how they spread in Sweden. Methods: We analyzed 348 Swedish SARS-CoV-2 sequences freely available from GISAID obtained from 7 February 2020 until 14 May 2020. Results: We identified 14 variant sites >= 5% frequency in the population. Among those sites, the D936Y substitution in the viral Spike protein was under positive selection. The variant sites can distinguish 11 mutational profiles in Sweden. Nine of the profiles appeared in Stockholm in March 2020. Mutational profiles 3 (B.1.1) and 6 (B.1), which contain the D936Y mutation, became the predominant profiles over time, spreading from Stockholm to other Swedish regions during April and the beginning of May. Furthermore, Bayesian phylogenetic analysis indicated that SARS-CoV-2 could have emerged in Sweden on 27 December 2019, and community transmission started on February 1st with an evolutionary rate of 1.5425 x 10(-3)substitutions per year. Conclusions: Our study provides novel knowledge on the spatio-temporal dynamics of Swedish SARS-CoV-2 variants during the early pandemic. Characterization of these viral variants can provide precious insights on viral pathogenesis and can be valuable for diagnostic and drug development approaches

    Exploring the Antibiotic Resistance Burden in Livestock, Livestock Handlers and Their Non-Livestock Handling Contacts: A One Health Perspective

    Get PDF
    Antibiotics are freqeuently used in the livestock sector in low- and middle-income countries for treatment, prophylaxis, and growth promotion. However, there is limited information into the zoonotic prevalence and dissemination patterns of antimicrobial resistance (AMR) within these environments. In this study we used pig farming in Thailand as a model to explore AMR; 156 pig farms were included, comprising of small-sized (= 100 sows) farms, where bacterial isolates were selectively cultured from animal rectal and human fecal samples. Bacterial isolates were subjected to antimicrobial susceptibility testing (AST), and whole-genome sequencing. Our results indicate extensive zoonotic sharing of antibiotic resistance genes (ARGs) by horizontal gene transfer. Resistance to multiple antibiotics was observed with higher prevalence in medium-scale farms. Zoonotic transmission of colistin resistance in small-scale farms had a dissemination gradient from pigs to handlers to non-livestock contacts. We highly recommend reducing the antimicrobial use in animals' feeds and medications, especially the last resort drug colistin

    Surface strength of materials to the method of friction

    Get PDF
    Influenza A virus (IAV) has its natural reservoir in wild waterfowl, and emerging human IAVs often contain gene segments from avian viruses. The active drug metabolite of oseltamivir (oseltamivir carboxylate [OC]), stockpiled as Tamiflu for influenza pandemic preparedness, is not removed by conventional sewage treatment and has been detected in river water. There, it may exert evolutionary pressure on avian IAV in waterfowl, resulting in the development of resistant viral variants. A resistant avian IAV can circulate among wild birds only if resistance does not restrict viral fitness and if the resistant virus can persist without continuous drug pressure. In this in vivo mallard (Anas platyrhynchos) study, we tested whether an OC-resistant avian IAV (H1N1) strain with an H274Y mutation in the neuraminidase (NA-H274Y) could retain resistance while drug pressure was gradually removed. Successively infected mallards were exposed to decreasing levels of OC, and fecal samples were analyzed for the neuraminidase sequence and phenotypic resistance. No reversion to wild-type virus was observed during the experiment, which included 17 days of viral transmission among 10 ducks exposed to OC concentrations below resistance induction levels. We conclude that resistance in avian IAV that is induced by exposure of the natural host to OC can persist in the absence of the drug. Thus, there is a risk that human-pathogenic IAVs that evolve from IAVs circulating among wild birds may contain resistance mutations. An oseltamivir-resistant pandemic IAV would pose a substantial public health threat. Therefore, our observations underscore the need for prudent oseltamivir use, upgraded sewage treatment, and surveillance for resistant IAVs in wild birds

    Intra- and inter-pandemic variations of antiviral, antibiotics and decongestants in wastewater treatment plants and receiving rivers

    Get PDF
    The concentration of eleven antibiotics (trimethoprim, oxytetracycline, ciprofloxacin, azithromycin, cefotaxime, doxycycline, sulfamethoxazole, erythromycin, clarithromycin, ofloxacin, norfloxacin), three decongestants (naphazoline, oxymetazoline, xylometazoline) and the antiviral drug oseltamivir’s active metabolite, oseltamivir carboxylate (OC), were measured weekly at 21 locations within the River Thames catchment in England during the month of November 2009, the autumnal peak of the influenza A[H1N1]pdm09 pandemic. The aim was to quantify the pharmaceutical response to the pandemic and compare this to drug use during the late pandemic (March 2010) and the inter-pandemic periods (May 2011). A large and small wastewater treatment plant (WWTP) were sampled in November 2009 to understand the differential fate of the analytes in the two WWTPs prior to their entry in the receiving river and to estimate drug users using a wastewater epidemiology approach. Mean hourly OC concentrations in the small and large WWTP’s influent were 208 and 350 ng/L (max, 2070 and 550 ng/L, respectively). Erythromycin was the most concentrated antibiotic measured in Benson and Oxford WWTPs influent (max = 6,870 and 2,930 ng/L, respectively). Napthazoline and oxymetazoline were the most frequently detected and concentrated decongestant in the Benson WWTP influent (1650 and 67 ng/L) and effluent (696 and 307 ng/L), respectively, but were below detection in the Oxford WWTP. OC was found in 73% of November 2009’s weekly river samples (max = 193 ng/L), but only in 5% and 0% of the late- and inter-pandemic river samples, respectively. The mean river concentration of each antibiotic during the pandemic largely fell between 17–74 ng/L, with clarithromycin (max = 292 ng/L) and erythromycin (max = 448 ng/L) yielding the highest single measure. In general, the concentration and frequency of detecting antibiotics in the river increased during the pandemic. OC was uniquely well-suited for the wastewater epidemiology approach owing to its nature as a prodrug, recalcitrance and temporally- and spatially-resolved prescription statistics

    Geographic Drivers of Antimicrobial Use and Resistance in Pigs in Khon Kaen Province, Thailand

    Get PDF
    In Thailand, pig production has increased considerably in the last decades to meet a growing demand for pork. Antimicrobials are used routinely in intensive pig production to treat infections and increase productivity. However, the use of antimicrobials also contributes to the rise of antimicrobial resistance with potential consequences for animal and human health. Here, we quantify the association between antimicrobial use and resistance rates in extensive and intensive farms with a focus on geographic proximity between farm and drugstores. Of the 164 enrolled farms, 79% reported using antimicrobials for disease prevention, treatment, or as a feed additive. Antimicrobial-resistant E. coli were present in 63% of farms. These drugs included critically important antimicrobials, such as quinolones and penicillins. Medium-scale farms with intensive animal production practices showed higher resistance rates than small-scale farms with extensive practices. Farms with drug-resistant Escherichia coli were located closer to drugstores and a had a higher proportion of disease than farms without drug-resistant E. coli. We found no association between the presence of resistance in humans and antimicrobial use in pigs. Our findings call for actions to improve herd health to reduce the need for antimicrobials and systematic training of veterinarians and drugstore owners on judicious use of antimicrobials in animals to mitigate resistance

    Genome-associations of extended-spectrum ss-lactamase producing (ESBL) or AmpC producing E. coli in small and medium pig farms from Khon Kaen province, Thailand

    Get PDF
    Thailand is undergoing rapid intensification of livestock production where small subsistence farms and medium sized commercial farms coexist. In medium farms, antimicrobials are prescribed by a veterinarian, whereas in small farms antimicrobial use remains largely unsupervised. The impact of these differences as well as other farming practices on the emergence and composition of antimicrobial resistance genes (ARGs) remains largely unknown. We analyzed 363 genomes of extended-spectrum ss-lactamase producing (ESBL) and/or AmpC producing Escherichia coli recovered from humans and pigs at small and medium farms from the Khon Kaen province, Thailand. We tested for genome-wide associations to identify links between ARGs, host, and farm size. Pig isolates from small farms were associated with mcr and qnr genes conferring resistance to colistin and fluoroquinolones, respectively. In contrast, pig isolates from medium farms were associated with ARGs conferring resistance to drugs commonly used on medium farms (i.e., streptomycin). ESBL plasmids from small farms co-carried ARGs conferring resistance to critically important antimicrobials more frequently compared to plasmid from medium farms. Frequent ARG combinations included bla(CTX-M-55) + qnrS1 (29.8% vs 17.5% in small and medium farms, respectively), bla(CTX-M-55) + qnrS1 + mcr-3.19 (5% vs 0%), bla(CTX-M-14) + qnrS1 (9.3% vs 6.2%), and bla(CTX-M-14) + qnrS1 + mcr-1.1 (3.1% vs 0%). The co-location on plasmids of ARGs conferring resistance to critically important antimicrobials as defined by the World Health Organization is concerning, and actions to curb their spread are urgently needed. Legislation on limiting antimicrobial sales and initiatives to better inform farmers and veterinarians on appropriate antimicrobial usage and farm biosecurity could help reduce antimicrobial use on farms

    Совершенствование инновационной деятельности предприятия (на примере ОАО «СтанкоГомель»)

    Get PDF
    Background Wild waterfowl is the natural reservoir of influenza A virus (IAV); hosted viruses are very variable and provide a source for genetic segments which can reassort with poultry or mammalian adapted IAVs to generate novel species crossing viruses. Additionally, wild waterfowl act as a reservoir for highly pathogenic IAVs. Exposure of wild birds to the antiviral drug oseltamivir may occur in the environment as its active metabolite can be released from sewage treatment plants to river water. Resistance to oseltamivir, or to other neuraminidase inhibitors (NAIs), in IAVs of wild waterfowl has not been extensively studied. Aim and Methods In a previous in vivo Mallard experiment, an influenza A(H6N2) virus developed oseltamivir resistance by the R292K substitution in the neuraminidase (NA), when the birds were exposed to oseltamivir. In this study we tested if the resistance could be maintained in Mallards without drug exposure. Three variants of resistant H6N2/R292K virus were each propagated during 17 days in five successive pairs of naive Mallards, while oseltamivir exposure was decreased and removed. Daily fecal samples were analyzed for viral presence, genotype and phenotype. Results and Conclusion Within three days without drug exposure no resistant viruses could be detected by NA sequencing, which was confirmed by functional NAI sensitivity testing. We conclude that this resistant N2 virus could not compete in fitness with wild type subpopulations without oseltamivir drug pressure, and thus has no potential to circulate among wild birds. The results of this study contrast to previous observations of drug induced resistance in an avian H1N1 virus, which was maintained also without drug exposure in Mallards. Experimental observations on persistence of NAI resistance in avian IAVs resemble NAI resistance seen in human IAVs, in which resistant N2 subtypes do not circulate, while N1 subtypes with permissive mutations can circulate without drug pressure. We speculate that the phylogenetic group N1 NAs may easier compensate for NAI resistance than group N2 NAs, though further studies are needed to confirm such conclusions

    Oseltamivir Resistance in Influenza A(H6N2) Caused by an R292K Substitution in Neuraminidase Is Not Maintained in Mallards without Drug Pressure

    No full text
    Background Wild waterfowl is the natural reservoir of influenza A virus (IAV); hosted viruses are very variable and provide a source for genetic segments which can reassort with poultry or mammalian adapted IAVs to generate novel species crossing viruses. Additionally, wild waterfowl act as a reservoir for highly pathogenic IAVs. Exposure of wild birds to the antiviral drug oseltamivir may occur in the environment as its active metabolite can be released from sewage treatment plants to river water. Resistance to oseltamivir, or to other neuraminidase inhibitors (NAIs), in IAVs of wild waterfowl has not been extensively studied. Aim and Methods In a previous in vivo Mallard experiment, an influenza A(H6N2) virus developed oseltamivir resistance by the R292K substitution in the neuraminidase (NA), when the birds were exposed to oseltamivir. In this study we tested if the resistance could be maintained in Mallards without drug exposure. Three variants of resistant H6N2/R292K virus were each propagated during 17 days in five successive pairs of naive Mallards, while oseltamivir exposure was decreased and removed. Daily fecal samples were analyzed for viral presence, genotype and phenotype. Results and Conclusion Within three days without drug exposure no resistant viruses could be detected by NA sequencing, which was confirmed by functional NAI sensitivity testing. We conclude that this resistant N2 virus could not compete in fitness with wild type subpopulations without oseltamivir drug pressure, and thus has no potential to circulate among wild birds. The results of this study contrast to previous observations of drug induced resistance in an avian H1N1 virus, which was maintained also without drug exposure in Mallards. Experimental observations on persistence of NAI resistance in avian IAVs resemble NAI resistance seen in human IAVs, in which resistant N2 subtypes do not circulate, while N1 subtypes with permissive mutations can circulate without drug pressure. We speculate that the phylogenetic group N1 NAs may easier compensate for NAI resistance than group N2 NAs, though further studies are needed to confirm such conclusions

    Genome sequences of two Salmonella enterica strains (MEZSAL74 and MEZSAL81) harbouring multiple antimicrobial resistance genes isolated from livestock in South Africa

    No full text
    Objectives: Antimicrobial-resistant livestock-associated Salmonella enterica infections pose a significant public-health threat worldwide. Here we report for the first time the draft genome sequences of two multidrug-resistant livestock-associated S. enterica strains isolated from a chicken and a cow in South Africa. Methods: Genomic DNA of S. enterica strains MEZSAL74 and MEZSAL81 was sequenced using an Illumina MiSeq platform. The generated reads were trimmed and de novo assembled. The assembled contigs were analysed for antimicrobial resistance genes, chromosomal mutations and extrachromosomal plasmids. Multilocus sequence typing (MLST) was also performed. In order to compare isolates MEZSAL74 and MEZSAL81 with other previously sequenced S. enterica isolates, raw read sequences were downloaded and all sequence files were treated identically to generate a bootstrapped maximum likelihood phylogenetic tree. Results: Extrachromosomal plasmids and genetic determinants of antimicrobial resistance were detected in both sequenced bacterial isolates to aminoglycosides and fluoroquinolones. By MLST, strain MEZSAL74 belonged to an unknown sequence type (ST) and strain MEZSAL81 belonged to ST33. Conclusion: The genome sequences of strains MEZSAL74 and MEZSAL81 reported here will serve as a reference for molecular epidemiological studies of antimicrobial-resistant livestock-associated S. enterica in Africa
    corecore