143 research outputs found

    Dietary patterns among Vietnamese and Hispanic immigrant elementary school children participating in an after school program

    Get PDF
    Immigrants in the U.S. may encounter challenges of acculturation, including dietary habits, as they adapt to new surroundings. We examined Vietnamese and Hispanic immigrant children's American food consumption patterns in a convenience sample of 63 Vietnamese and Hispanic children in grades four to six who were attending an after school program. Children indicated the number of times they consumed each of 54 different American foods in the past week using a food frequency questionnaire. We ranked each food according to frequency of consumption, compared the intake of foods to the USDA Healthy Eating Pattern, and performed dietary pattern analysis. Since the data were not normally distributed we used two nonparametric tests to evaluate statistical significance: the Kruskal-Wallis tested for significant gender and ethnicity differences and the Wilcoxon signed-rank test evaluated the food consumption of children compared with the USDA recommended amounts. We found that among USDA categories, discretionary food was most commonly consumed, followed by fruit. The sample as a whole ate significantly less than the recommended amount of grains, protein foods, and dairy, but met the recommended amount of fruit. Boys ate significantly more grains, proteins, and fruits than did girls. Dietary pattern analysis showed a very high sweet snack consumption among all children, while boys ate more fast food and fruit than girls. Foods most commonly consumed were cereal, apples, oranges, and yogurt. Ethnicity differences in food selection were not significant. The high intake of discretionary/snack foods and fruit, with low intake of grains, vegetables, protein, and dairy in our sample suggests Vietnamese and Hispanic immigrant children may benefit from programs to improve diet quality

    Magic: The Gathering Card Virtualizer

    Get PDF
    Any well-versed Magic: The Gathering (MTG) player or collector knows how difficult it can be to keep track of all cards in their collection. Some spend hours searching for that one specific card, and others are constantly scouring the internet for how much their collection costs. However, this issue does not only affect casual fans. Resale companies spend hours a day determining the costs of cards, and tournament judges painstakingly check players’ decks to ensure they are not cheating. To assist with these struggles, the design team proposed to create the MTG Card Virtualizer. This device scans MTG playing cards and virtualizes them into a smart database. Using this smart database, players, collectors, and even resale companies can easily search through their extensive collections and check the market value of their cards. Users can insert up to seventy-five MTG cards and quickly virtualize a full deck in under five minutes. The proposed design utilizes the Nvidia Jetson Nano and a custom-designed circuit board, paired with a SQL database and a user-friendly application to virtualize entire collections. Not only are all of the user’s cards in one location, but they can search for cards, determine the cost of their collection, and find out if their decks are tournament legal

    Multiscale Analysis of Delamination of Carbon Fiber-Epoxy Laminates with Carbon Nanotubes

    Get PDF
    A multi-scale analysis is presented to parametrically describe the Mode I delamination of a carbon fiber/epoxy laminate. In the midplane of the laminate, carbon nanotubes are included for the purposes of selectively enhancing the fracture toughness of the laminate. To analyze carbon fiber epoxy carbon nanotube laminate, the multi-scale methodology presented here links a series of parameterizations taken at various length scales ranging from the atomistic through the micromechanical to the structural level. At the atomistic scale molecular dynamics simulations are performed in conjunction with an equivalent continuum approach to develop constitutive properties for representative volume elements of the molecular structure of components of the laminate. The molecular-level constitutive results are then used in the Mori-Tanaka micromechanics to develop bulk properties for the epoxy-carbon nanotube matrix system. In order to demonstrate a possible application of this multi-scale methodology, a double cantilever beam specimen is modeled. An existing analysis is employed which uses discrete springs to model the fiber bridging affect during delamination propagation. In the absence of empirical data or a damage mechanics model describing the effect of CNTs on fracture toughness, several tractions laws are postulated, linking CNT volume fraction to fiber bridging in a DCB specimen. Results from this demonstration are presented in terms of DCB specimen load-displacement responses

    Multi-scale Rule-of-Mixtures Model of Carbon Nanotube/Carbon Fiber/Epoxy Lamina

    Get PDF
    A unidirectional carbon fiber/epoxy lamina in which the carbon fibers are coated with single-walled carbon nanotubes is modeled with a multi-scale method, the atomistically informed rule-of-mixtures. This multi-scale model is designed to include the effect of the carbon nanotubes on the constitutive properties of the lamina. It included concepts from the molecular dynamics/equivalent continuum methods, micromechanics, and the strength of materials. Within the model both the nanotube volume fraction and nanotube distribution were varied. It was found that for a lamina with 60% carbon fiber volume fraction, the Young's modulus in the fiber direction varied with changes in the nanotube distribution, from 138.8 to 140 GPa with nanotube volume fractions ranging from 0.0001 to 0.0125. The presence of nanotube near the surface of the carbon fiber is therefore expected to have a small, but positive, effect on the constitutive properties of the lamina

    Compression-Loaded Composite Panels With Elastic Edge Restraints and Initial Prestress

    Get PDF
    A parametric study of the effects of test-fixture-induced initial prestress and elastic edge restraints on the prebuckling and buckling responses of a compression-loaded, quasi-isotropic curved panel is presented. The numerical results were obtained by using a geometrically nonlinear finite element analysis code with high-fidelity models. The results presented show that a wide range of prebuckling and buckling behavior can be obtained by varying parameters that represent circumferential loaded-edge restraint and rotational unloaded-edge restraint provided by a test fixture and that represent the mismatch in specimen and test-fixture radii of curvature. For a certain range of parameters, the panels exhibit substantial nonlinear prebuckling deformations that yield buckling loads nearly twice the corresponding buckling load predicted by a traditional linear bifurcation buckling analysis for shallow curved panels. In contrast, the results show another range of parameters exist for which the nonlinear prebuckling deformations either do not exist or are relatively benign, and the panels exhibit buckling loads that are nearly equal to the corresponding linear bifurcation buckling load. Overall, the results should be of particular interest to scientists, engineers, and designers involved in simulating flight-hardware boundary conditions in structural verification and certification tests, involved in validating structural analysis tools, and interested in tailoring buckling performance

    Innovative Industry: Environmental horticulture professionals’ perceptions on wildlife-friendly plants and a potential certification offering

    Get PDF
    Plants can improve people’s lives and mental health, but consumers have become increasingly concerned about the impact of plant production practices on the environment and wildlife. Previous research has not explored the interest and ability of plant producers and suppliers to provide wildlife friendly plant options for consumers. The University of Florida is considering the development of a wildlife-friendly plant certification to enhance production protocols for growers and connect consumers to sustainable plant options. This study explored perceptions of this certification through 11 in-depth interviews with environmental horticulture professionals. The study was guided by the following research questions: 1) What experiences do environmental horticulture professionals have with wildlife-friendly plants?, 2) What trends do environmental horticulture professionals see with consumers?, 3) What are the benefits and barriers to adopting this wildlife-friendly plant certification?, and 4) What communication strategies are needed to make this wildlife-friendly plant certification viable? Results indicate environmental horticulture professionals recognize the advantages of wildlife-friendly plants. However, the interviews revealed specific barriers to adoption and communication considerations that would impact certification diffusion. Implications of this research include a need for strategic programming regarding the wildlife-friendly plant certification and cohesive communication strategies among environmental horticulture organizations to educate professionals and consumers about wildlife-friendly plant options

    Evaluating an Alleged Mimic of the Monarch Butterfly: \u3ci\u3eNeophasia\u3c/i\u3e (Lepidoptera: Pieridae) Butterflies are Palatable to Avian Predators

    Get PDF
    Some taxa have adopted the strategy of mimicry to protect themselves from predation. Butterflies are some of the best representatives used to study mimicry, with the monarch butterfly, Danaus plexippus (Lepidoptera: Nymphalidae) a well-known model. We are the first to empirically investigate a proposed mimic of the monarch butterfly: Neophasia terlooii, the Mexican pine white butterfly (Lepidoptera: Pieridae). We used captive birds to assess the palatability of N. terlooii and its sister species, N. menapia, to determine the mimicry category that would best fit this system. The birds readily consumed both species of Neophasia and a palatable control species but refused to eat unpalatable butterflies such as D. plexippus and Heliconius charithonia (Lepidoptera: Nymphalidae). Given some evidence for mild unpalatability of Neophasia, we discuss the results considering modifications to classic mimicry theory, i.e., a palatability-based continuum between Batesian and Müllerian mimicry, with a quasi-Batesian intermediate. Understanding the ecology of Neophasia in light of contemporary and historical sympatry with D. plexippus could shed light on the biogeography of, evolution of, and predation pressure on the monarch butterfly, whose migration event has become a conservation priority

    Machine Learning Outperforms Regression Analysis to Predict Next-Season Major League Baseball Player Injuries: Epidemiology and Validation of 13,982 Player-Years From Performance and Injury Profile Trends, 2000-2017

    Get PDF
    Background: Machine learning (ML) allows for the development of a predictive algorithm capable of imbibing historical data on a Major League Baseball (MLB) player to accurately project the player\u27s future availability. Purpose: To determine the validity of an ML model in predicting the next-season injury risk and anatomic injury location for both position players and pitchers in the MLB. Study Design: Descriptive epidemiology study. Methods: Using 4 online baseball databases, we compiled MLB player data, including age, performance metrics, and injury history. A total of 84 ML algorithms were developed. The output of each algorithm reported whether the player would sustain an injury the following season as well as the injury\u27s anatomic site. The area under the receiver operating characteristic curve (AUC) primarily determined validation. Results: Player data were generated from 1931 position players and 1245 pitchers, with a mean follow-up of 4.40 years (13,982 player-years) between the years of 2000 and 2017. Injured players spent a total of 108,656 days on the disabled list, with a mean of 34.21 total days per player. The mean AUC for predicting next-season injuries was 0.76 among position players and 0.65 among pitchers using the top 3 ensemble classification. Back injuries had the highest AUC among both position players and pitchers, at 0.73. Advanced ML models outperformed logistic regression in 13 of 14 cases. Conclusion: Advanced ML models generally outperformed logistic regression and demonstrated fair capability in predicting publicly reportable next-season injuries, including the anatomic region for position players, although not for pitchers

    Deep Underground Science and Engineering Laboratory - Preliminary Design Report

    Full text link
    The DUSEL Project has produced the Preliminary Design of the Deep Underground Science and Engineering Laboratory (DUSEL) at the rehabilitated former Homestake mine in South Dakota. The Facility design calls for, on the surface, two new buildings - one a visitor and education center, the other an experiment assembly hall - and multiple repurposed existing buildings. To support underground research activities, the design includes two laboratory modules and additional spaces at a level 4,850 feet underground for physics, biology, engineering, and Earth science experiments. On the same level, the design includes a Department of Energy-shepherded Large Cavity supporting the Long Baseline Neutrino Experiment. At the 7,400-feet level, the design incorporates one laboratory module and additional spaces for physics and Earth science efforts. With input from some 25 science and engineering collaborations, the Project has designed critical experimental space and infrastructure needs, including space for a suite of multidisciplinary experiments in a laboratory whose projected life span is at least 30 years. From these experiments, a critical suite of experiments is outlined, whose construction will be funded along with the facility. The Facility design permits expansion and evolution, as may be driven by future science requirements, and enables participation by other agencies. The design leverages South Dakota's substantial investment in facility infrastructure, risk retirement, and operation of its Sanford Laboratory at Homestake. The Project is planning education and outreach programs, and has initiated efforts to establish regional partnerships with underserved populations - regional American Indian and rural populations
    • …
    corecore