2,179 research outputs found

    Stellar Differential Rotation and Coronal Timescales

    Get PDF
    We investigate the timescales of evolution of stellar coronae in response to surface differential rotation and diffusion. To quantify this we study both the formation time and lifetime of a magnetic flux rope in a decaying bipolar active region. We apply a magnetic flux transport model to prescribe the evolution of the stellar photospheric field, and use this to drive the evolution of the coronal magnetic field via a magnetofrictional technique. Increasing the differential rotation (i.e. decreasing the equator-pole lap time) decreases the flux rope formation time. We find that the formation time is dependent upon the geometric mean of the lap time and the surface diffusion timescale. In contrast, the lifetime of flux ropes are proportional to the lap time. With this, flux ropes on stars with a differential rotation of more than eight times the solar value have a lifetime of less than two days. As a consequence, we propose that features such as solar-like quiescent prominences may not be easily observable on such stars, as the lifetimes of the flux ropes which host the cool plasma are very short. We conclude that such high differential rotation stars may have very dynamical coronae

    Ionization in atmospheres of brown dwarfs and extrasolar planets III. Breakdown conditions for mineral clouds

    Get PDF
    Electric discharges were detected directly in the cloudy atmospheres of Earth, Jupiter, and Saturn, are debatable for Venus, and indirectly inferred for Neptune and Uranus in our solar system. Sprites (and other types of transient luminous events) have been detected only on Earth, and are theoretically predicted for Jupiter, Saturn, and Venus. Cloud formation is a common phenomenon in ultra-cool atmospheres such as in brown dwarf and extrasolar planetary atmospheres. Cloud particles can be expected to carry considerable charges which may trigger discharge events via small-scale processes between individual cloud particles (intra-cloud discharges) or large-scale processes between clouds (inter-cloud discharges). We investigate electrostatic breakdown characteristics, like critical field strengths and critical charge densities per surface, to demonstrate under which conditions mineral clouds undergo electric discharge events which may trigger or be responsible for sporadic X-ray emission. We apply results from our kinetic dust cloud formation model that is part of the Drift-Phoenix model atmosphere simulations. We present a first investigation of the dependence of the breakdown conditions in brown dwarf and giant gas exoplanets on the local gas-phase chemistry, the effective temperature, and primordial gas-phase metallicity. Our results suggest that different intra-cloud discharge processes dominate at different heights inside mineral clouds: local coronal (point discharges) and small-scale sparks at the bottom region of the cloud where the gas density is high, and flow discharges and large-scale sparks near, and maybe above, the cloud top. The comparison of the thermal degree of ionization and the number density of cloud particles allows us to suggest the efficiency with which discharges will occur in planetary atmospheres.Publisher PDFPeer reviewe

    Graph-Embedding Empowered Entity Retrieval

    Full text link
    In this research, we improve upon the current state of the art in entity retrieval by re-ranking the result list using graph embeddings. The paper shows that graph embeddings are useful for entity-oriented search tasks. We demonstrate empirically that encoding information from the knowledge graph into (graph) embeddings contributes to a higher increase in effectiveness of entity retrieval results than using plain word embeddings. We analyze the impact of the accuracy of the entity linker on the overall retrieval effectiveness. Our analysis further deploys the cluster hypothesis to explain the observed advantages of graph embeddings over the more widely used word embeddings, for user tasks involving ranking entities

    X-ray Emission From Nearby M-dwarfs: the Super-saturation Phenomenon

    Get PDF
    A rotation rate and X-ray luminosity analysis is presented for rapidly rotating single and binary M-dwarf systems. X-ray luminosities for the majority of both single & binary M-dwarf systems with periods below 56\simeq 5-6 days (equatorial velocities, Veq>_{eq}> 6 km~s1^{-1}) are consistent with the current rotation-activity paradigm, and appear to saturate at about 10310^{-3} of the stellar bolometric luminosity. The single M-dwarf data show tentative evidence for the super-saturation phenomenon observed in some ultra-fast rotating (>> 100 km~s1^{-1}) G & K-dwarfs in the IC 2391, IC 2602 and Alpha Persei clusters. The IC 2391 M star VXR60b is the least X-ray active and most rapidly rotating of the short period (Prot<_{rot}< 2 days) stars considered herein, with a period of 0.212 days and an X-ray activity level about 1.5 sigma below the mean X-ray emission level for most of the single M-dwarf sample. For this star, and possibly one other, we cautiously believe that we have identified the first evidence of super-saturation in M-dwarfs. If we are wrong, we demonstrate that only M-dwarfs rotating close to their break up velocities are likely to exhibit the super-saturation effect at X-ray wavelengths.Comment: 12 pages, 4 figures, accepted by MNRA

    Simulation and analysis of solenoidal ion sources

    Get PDF
    We present a detailed analysis and simulation of solenoidal, magnetically confined electron bombardment ion sources, aimed at molecular beam detection. The aim is to achieve high efficiency for singly ionized species while minimizing multiple ionization. Electron space charge plays a major role and we apply combined ray tracing and finite element simulations to determine the properties of a realistic geometry. The factors controlling electron injection and ion extraction are discussed. The results from simulations are benchmarked against experimental measurements on a prototype source

    Briefing: UK Ministry of Defence Force Protection Engineering Programme

    Get PDF
    The Defence Science and Technology Laboratory sponsored, QinetiQ-led Force Protection Engineering Research Programme has two main strands, applied and underpinning research. The underpinning strand is led by Blastech Ltd. One focus of this research is into the response of geomaterials to threat loading. The programme on locally won fill is split into four main characterisation strands: high-stress (GPa) static pressure–volume; medium-rate pressure–volume (split Hopkinson bar); high-rate (flyer plate) pressure–volume; and unifying modelling research at the University of Sheffield, which has focused on developing a high-quality dataset for locally won fill in low and medium strain rates. With the test apparatus at Sheffield well-controlled tests can be conducted at both high strain rate and pseudo-static rates up to stress levels of 1 GPa. The University of Cambridge has focused on using one-dimensional shock experiments to examine high-rate pressure–volume relationships. Both establishments are examining the effect of moisture content and starting density on emergent rate effects. Blastech Ltd has been undertaking carefully controlled fragment impact experiments, within the dataspace developed by the Universities of Sheffield and Cambridge. The data from experiments are unified by the QinetiQ-led modelling team, to predict material behaviour and to derive a scalable locally won fill model for use in any situation

    Serum phosphate and social deprivation independently predict all-cause mortality in chronic kidney disease

    Get PDF
    Background: Hyperphosphataemia is linked to cardiovascular disease and mortality in chronic kidney disease (CKD). Outcome in CKD is also affected by socioeconomic status. The objective of this study was to assess the associations between serum phosphate, multiple deprivation and outcome in CKD patients. Methods: All adult patients currently not on renal replacement therapy (RRT), with first time attendance to the renal outpatient clinics in the Glasgow area between July 2010 and June 2014, were included in this prospective study. Area socioeconomic status was assessed as quintiles of the Scottish Index of Multiple Deprivation (SIMD). Outcomes were all-cause and cardiovascular mortality and commencement of RRT. Results: The cohort included 2950 patients with a median (interquartile range) age 67.6 (53.6–76.9) years. Median (interquartile range) eGFR was 38.1 (26.3–63.5) ml/min/1.73 m 2 , mean (±standard deviation) phosphate was 1.13 (±0.24) mmol/L and 31.6 % belonged to the most deprived quintile (SIMD quintile I). During follow-up 375 patients died and 98 commenced RRT. Phosphate &#8805;1.50 mmol/L was associated with all-cause (hazard ratio (HR) 2.51; 95 % confidence interval (CI) 1.63-3.89) and cardiovascular (HR 5.05; 95 % CI 1.90–13.46) mortality when compared to phosphate 0.90–1.09 mmol/L in multivariable analyses. SIMD quintile I was independently associated with all-cause mortality. Phosphate did not weaken the association between deprivation index and mortality, and there was no interaction between phosphate and SIMD quintiles. Neither phosphate nor SIMD predicted commencement of RRT. Conclusions Multiple deprivation and serum phosphate were strong, independent predictors of all-cause mortality in CKD and showed no interaction. Phosphate also predicted cardiovascular mortality. The results suggest that phosphate lowering should be pursued regardless of socioeconomic status

    Heating and cooling in stellar coronae: coronal rain on a young Sun

    Full text link
    Recent observations of rapidly-rotating cool dwarfs have revealed Hα\alpha line asymmetries indicative of clumps of cool, dense plasma in the stars' coronae. These clumps may be either long-lived (persisting for more than one stellar rotation) or dynamic. The fastest dynamic features show velocities greater than the escape speed, suggesting that they may be centrifugally ejected from the star, contributing to the stellar angular momentum loss. Many however show lower velocities, similar to coronal rain observed on the Sun. We present 2.5D magnetohydrodynamic simulations of the formation and dynamics of these condensations in a rapidly rotating (Prot = 1 dayP_{\rm rot}~=~ 1 \ \mathrm{day}) young Sun. Formation is triggered by excess surface heating. This pushes the system out of thermal equilibrium and triggers a thermal instability. The resulting condensations fall back towards the surface. They exhibit quasi-periodic behaviour, with periods longer than typical periods for solar coronal rain. We find line-of-sight velocities for these clumps in the range 50 km s150 \ \mathrm{km} \ \mathrm{s}^{-1} (blue shifted) to $250 \ \mathrm{km} \ \mathrm{s}^{-1}(redshifted).ThesearetypicalofthoseinferredfromstellarH (red shifted). These are typical of those inferred from stellar H\alphalineasymmetries,buttheinferredclumpmassesof line asymmetries, but the inferred clump masses of 3.6\times 10^{14}\ \mathrm{g}aresignificantlysmaller.Wefindthatamaximumof are significantly smaller. We find that a maximum of \simeq~3\%$ of the coronal mass is cool clumps. We conclude that coronal rain may be common in solar like stars, but may appear on much larger scales in rapid rotators.Comment: 11 pages, 5 figure

    fMR-Adaptation Reveals Invariant Coding of Biological Motion on the Human STS

    Get PDF
    Neuroimaging studies of biological motion perception have found a network of coordinated brain areas, the hub of which appears to be the human posterior superior temporal sulcus (STSp). Understanding the functional role of the STSp requires characterizing the response tuning of neuronal populations underlying the BOLD response. Thus far our understanding of these response properties comes from single-unit studies of the monkey anterior STS, which has individual neurons tuned to body actions, with a small population invariant to changes in viewpoint, position and size of the action being viewed. To measure for homologous functional properties on the human STS, we used fMR-adaptation to investigate action, position and size invariance. Observers viewed pairs of point-light animations depicting human actions that were either identical, differed in the action depicted, locally scrambled, or differed in the viewing perspective, the position or the size. While extrastriate hMT+ had neural signals indicative of viewpoint specificity, the human STS adapted for all of these changes, as compared to viewing two different actions. Similar findings were observed in more posterior brain areas also implicated in action recognition. Our findings are evidence for viewpoint invariance in the human STS and related brain areas, with the implication that actions are abstracted into object-centered representations during visual analysis
    corecore