In this research, we improve upon the current state of the art in entity
retrieval by re-ranking the result list using graph embeddings. The paper shows
that graph embeddings are useful for entity-oriented search tasks. We
demonstrate empirically that encoding information from the knowledge graph into
(graph) embeddings contributes to a higher increase in effectiveness of entity
retrieval results than using plain word embeddings. We analyze the impact of
the accuracy of the entity linker on the overall retrieval effectiveness. Our
analysis further deploys the cluster hypothesis to explain the observed
advantages of graph embeddings over the more widely used word embeddings, for
user tasks involving ranking entities