52 research outputs found

    Environmental chemical stressors as epigenome modifiers:a new horizon in assessment of toxicological effects

    Get PDF
    In eukaryotic cells, chromatin transformation from euchromatin into heterochromatin as a means of controlling gene expression and replication has been known as the ?accessibility hypothesis?. The interplay of epigenetic changes including histone modifications, DNA methylation, RNA interference (RNAi) and other functional epigenetic components are intricate. It is believed that these changes are well-programmed, inherited and can be modified by environmental contaminant stressors. Environmentally-driven epigenetic alterations during development, e.g. embryonic, foetal or neonatal stage, may influence disease susceptibility in adulthood. Therefore, understanding how epigenome modifications develop in response to environmental chemicals and, how epigenetic-xenobiotic interactions influence human health will shed new insights into gene-environment interactions in the epidemiology of several diseases including cancer. In this review, we consider studies of chemical modifiers including nutritional and xenobiotic effects on epigenetic components in vitro or in vivo. By examining the most-studied epigenome modifications and how their respective roles are interlinked, we highlight the central role of xenbiotic-modified epigenetic mechanisms. A major requirement will be to study and understand effects following environmentally-relevant exposures. We suggest that the study of epigenetic toxicology will open up new opportunities to devise strategies for the prevention or treatment of at-risk populations

    Occult Hepatitis B Virus Infection in Immunocompromised Patients

    No full text
    Occult hepatitis B infection is characterized by hepatitis B virus (HBV) DNA in the serum in the absence of hepatitis B surface antigen (HBsAg). We assessed occult HBV infection prevalence in two groups of immunocompromised patients (maintenance hemodialysis patients and HIV-positive patients) presenting HBsAg-negative and anti-HBc positive serological patterns, co-infected or not by HCV. Thirty-four hemodialysis anti-HIV negative patients, 159 HIV-positive patients and 150 blood donors who were anti-HBc positive (control group) were selected. HBV-DNA was detected by nested-PCR. Occult hepatitis B infection was not observed in the hemodialysis patients group but was found in 5% of the HIV-patients and in 4% of the blood donors. Immunosuppression in HIV-positive patients was not a determining factor for occult HBV infection. In addition, no significant relationship between HBV-DNA and HCV co-infection in the HIV-positive patient group was found. A lack of significant associations was also observed between positivity for HBV-DNA and CD4 count, viral load and previous lamivudine treatment in these HIV-positive patients.12430030

    An immunohistochemical, clinical and electroneuromyographic correlative study of the neural markers in the neuritic form of leprosy

    No full text
    The nerve biopsies of 11 patients with pure neuritic leprosy were submitted to routine diagnostic procedures and immunoperoxidase staining with antibodies against axonal (neurofilament, nerve growth factor receptor (NGFr), and protein gene product (PGP) 9.5) and Schwann cell (myelin basic protein, S-100 protein, and NGFr) markers. Two pairs of non-adjacent histological cross-sections of the peripheral nerve were removed for quantification. All the fascicles of the nerve were examined with a 10X-ocular and 40X-objective lens. The immunohistochemistry results were compared to the results of semithin section analysis and clinical and electroneuromyographic data. Neurofilament staining was reduced in 100% of the neuritic biopsies. NGFr positivity was also reduced in 81.8%, PGP staining in 100% of the affected nerves, S100 positivity in 90.9%, and myelin basic protein immunoreactivity in 90.9%. Hypoesthesia was associated with decreased NGFr (81.8%) and PGP staining (90.9%). Reduced potential amplitudes (electroneuromyographic data) were found to be associated with reduced PGP 9.5 (63.6%) and nerve fiber neurofilament staining (45.4%) by immunohistochemistry and with loss of myelinated fibers (100%) by semithin section analysis. On the other hand, the small fibers (immunoreactive dots) seen amid inflammatory cells continued to be present even after 40% of the larger myelinated fibers had disappeared. The present study shows an in-depth view of the destructive effects of leprosy upon the expression of neural markers and the integrity of nerve fiber. The association of these structural changes with the clinical and electroneuromyographic manifestations of leprosy peripheral neuropathy was also discussed
    corecore