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Abstract In eukaryotic cells, chromatin transformation

from euchromatin into heterochromatin as a means of

controlling gene expression and replication has been

known as the ‘‘accessibility hypothesis’’. The interplay of

epigenetic changes including histone modifications, DNA

methylation, RNA interference (RNAi) and other func-

tional epigenetic components are intricate. It is believed

that these changes are well-programmed, inherited and can

be modified by environmental contaminant stressors.

Environmentally-driven epigenetic alterations during

development, e.g. embryonic, foetal or neonatal stage, may

influence disease susceptibility in adulthood. Therefore,

understanding how epigenome modifications develop in

response to environmental chemicals and, how epigenetic-

xenobiotic interactions influence human health will shed

new insights into gene-environment interactions in the

epidemiology of several diseases including cancer. In this

review, we consider studies of chemical modifiers includ-

ing nutritional and xenobiotic effects on epigenetic com-

ponents in vitro or in vivo. By examining the most-studied

epigenome modifications and how their respective roles are

interlinked, we highlight the central role of xenbiotic-

modified epigenetic mechanisms. A major requirement will

be to study and understand effects following environmen-

tally-relevant exposures. We suggest that the study of

epigenetic toxicology will open up new opportunities to

devise strategies for the prevention or treatment of at-risk

populations.
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In eukaryotic cells, chromatin transformation from

euchromatin into heterochromatin as a means of control-

ling gene expression and replication has been known as the

‘‘accessibility hypothesis’’. Various epigenome modifica-

tions can remodel chromatin accessibility [1, 2]. Within the

cell nucleus, the most actively transcribed chromatin is

lightly-packed euchromatin, which is characteristically

hyperacetylated at N-terminal lysine residues in core His-

tones H3 (H3Kac; i.e. H3 lysine-9/14 acetylation) and H4

(H4Kac; i.e. Histone H4 acetylated lysine) along with hy-

pomethylated CpG islands in related gene promoter

regions. Some constitutive euchromatin may be ‘‘always

turned on’’, including regions encoding housekeeping

genes. Rendering it inaccessible, tightly-packed hetero-

chromatin usually expresses different variations of hypo-

acetylated histones ranging between the two extreme levels

representing constitutive and facultative. Constitutive het-

erochromatin is poorly expressed and consists mainly of

repetitive structures such as (peri) centromeric satellites

and telomeric repeats with typically tri-methylated lysine

residues H3K9 (H3K9me3; i.e. Histone H3 trimethyl
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Lysine 9), in which the histone methyltransferases (HMTs)

and heterochromatin protein 1 (HP1) are specifically bound

to H3K9me3 [3–5].

For some genes subject to developmental regulation,

sequences may be either tightly packaged in facultative

heterochromatin containing hypermethylated CpG islands

in one cell whilst in another, they may occur in euchro-

matin with hypomethylated CpG islands; this could include

the X chromosome genes that are inactive in female

mammals but active in males and the inactive alleles of

methylated genes with monoallelic expression subject to

imprinting [6]. In facultative heterochromatin, H3K9 (i.e.

Histone H3 Lysine 9) and H4K20 (i.e. Histone H4 Lysine

20) are in general di- or mono-methylated; the silenced

gene is maintained by H3K27me3 (i.e. Histone H3 tri-

methyl Lysine 27) and mono-ubiquitylated H2AK119 [5].

Histone modifications also include phosphorylation, ubiq-

uitinylation, sumoylation, ADP-ribosylation, carbonyl-

ation, deimination and proline isomerization [7].

In addition, chromatin architecture is regulated by

ncRNAs; microRNAs (miRNAs) often act in concert with

various components of the cell’s chromatin and DNA

methylation machinery to achieve stable silencing via the

RNAi pathway, with associated alterations to chromatin

structure [8]; these are believed to regulate up to one-third

of all human genes by interfering with mRNA functions

[9]. Heterochromatin formation appears to be broadly

regulated by small RNAs, i.e. RNAi-related processes [8].

Several additional classes of ncRNAs, such as repeat-

associated small-interfering (si) RNAs (RasiRNAs) in

Drosophila and their mammalian counterparts Piwi pro-

tein-interacting RNAs (piRNAs), are found to be involved

in the regulation of genomic architecture, the maintenance

of germline genomic integrity and the ageing process [7,

8]. Moreover, as parental imprinting is intimately linked to

ncRNAs [8], this reflects the fact that RNA-directed reg-

ulatory processes may also transfer epigenetic information

not only within cells but also between cells and organ

systems, as well as being trans-generational [10]. Recent

research suggests LINE-1 retrotransposon RNA is an

essential structural and functional epigenetic component

for centromeric activity [11] and non-coding genes Xist (X-

inactive specific transcript), an RNA gene on the X chro-

mosome of placental mammals that acts as an effector of

the X-inactivation process, can regulate the expansion of

heterochromatin [12].

Although cross-talk with constitutive processes is a

major epigenomic regulator [13–16], one also needs to

consider the role that chemical modifiers, including nutri-

tional and xenobiotic, play in modifying epigenetic com-

ponents in vitro or in vivo. The core focus of this review

will be on how xenobiotics-induced adverse epigenetic

alterations or epigenetic toxicity beyond the DNA

sequence impacts on heritable gene expression or

phenotype.

1 Chemical-induced epigenetic component alterations

Whilst one inherits their genetic sequence code, the

expression or silencing of individual genes can be modified

by environmental factors [10, 17]. Recent research suggests

that exposure to environmental stressors, including nutri-

tional factors and chemical or physical pollutants can alter

gene expression via altered epigenetic components [18–

22]. Such epigenetic processes play a significant role in

acclimation to environmental stresses. A wide range of

environmental factors, including xenobiotic chemicals,

diet, stress, behaviour, geographic location and even

weather patterns have been shown to alter gene expression

via epigenetic alterations [20, 21, 23]. Certain environ-

mental stressor-stimulated epigenetic alterations can be

passed from one generation to the future generations [24,

25]; however, these findings need to be robustly tested in

future studies.

1.1 Inorganic chemicals

Acetylation has been linked with transcriptional stimula-

tion [3]. Recent studies have associated nickel with histone

modifications and altered chromatin organization. At non-

toxic levels, it induces decreases of Histone H4 acetylation

in yeast [26]. Post-nickel exposure, decreased gene

expression coincided with three major histone modifica-

tions, including loss of acetylation (of H2A, H2B, H3 and

H4), increased H3K9me2 (i.e. Histone H3 dimethyl Lysine

9), and increased ubiquitinylation of H2A and H2B [27–

29]. Chromium exposure was linked to epigenetic-con-

trolled gene expression alterations via interactions with

histone acetyltransferases (HATs) and histone deacetylases

(HDACs) [30], the enzymes that catalyze histone deacet-

ylation and acetylation, respectively. Chromium reduces

phosphorylation and trimethylation in H3, modifies a

variety of acetylation marks in H3 and H4, and influences

P16 hypermethylation in lung cancer tissues [30–32].

Developmental mouse exposure to low levels of methyl-

mercury may induce epigenetic suppression via DNA hy-

permethylation of gene expression particularly of the brain-

derived neurotrophic factor (BDNF) promoter region in the

hippocampus, an increase in histone H3K27me3 (i.e. His-

tone H3 trimethyl Lysine 27) and a decrease in H3ac (i.e.

acetylated Histone H3) at the promoter IV [33].

Occupational or environmental exposure to cadmium,

arsenic, nickel, chromium, methylmercury or lead can

result in altered DNA methylation [21]; following heavy

metal (cadmium, arsenic or nickel) exposures, the resulting
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pathologies in rodents exhibit an epigenetic profile that

resembles that of animals fed a methyl-deficient diet.

Short-term cadmium exposure inhibits DNA methyltrans-

ferases (DNMT) activity, but prolonged exposure increases

DNA methylation and DNMT activity, resulting in neo-

plastic transformation in rat hepatocytes [34, 35]. Cad-

mium alterations of DNA methylation may be responsible

for its carcinogenic properties. By promoter hypermethy-

lation in human lung adenocarcinoma, plutonium can tar-

get P16 for inactivation [36]. Arsenic is also associated

with gene-specific hypermethylation as well as global DNA

hypomethylation, which depletes SAM (S-adenosyl

methionine) and represses DNMT1 and DNMT3A activity

[37]. Adult mice exposed to sodium arsenite exhibit

reduced DNA methylation whilst co-exposure of sodium

arsenite with a methyl-deficient diet results in gene-specific

hypomethylation in the promoter region of the oncogene

Ha-ras [38]. An India-based human study showed a dose–

response relationship between hypermethylation and

arsenic exposure from drinking water [39]. Similarly, a

dose-dependent hypermethylation in blood DNA was

associated with chronic arsenic exposure in Bangladeshi

adults [40].

1.2 Organic chemicals

Exposure to some endocrine disruptors has been linked

with epigenetic alterations that are inherited trans-genera-

tionally [24, 25] via germ line transmission of imprinted

genes exhibiting an altered methylation pattern. Transient

exposure to the oestrogenic insecticide methoxychlor and

the antiandrogenic fungicide vinclozolin at the time of sex

determination appeared to alter methylation of two

imprinted genes of LPLase and cytokine-inducible SH2

protein in the male germ line of pregnant rats [24]. Adverse

effects were reported to last for four subsequent genera-

tions in approximately 90 % of males and, suggested

vinclozolin-induced DNA methylation changes are inher-

ited [41]. Vinclozolin may also target Sertoli cells in mice,

and exploit miRNAs to elicit its anti-androgenic effects

[42]. The oestrogenic diethylstilbestrol (DES) caused the

aberrant DNA methylation of oestrogen-regulated genes

such as lactoferrin (LF) in mice exposed in utero or peri-

natally and transgenerational effects were observed in

DES-exposed individuals [43–45]. Neonatal exposure to

oestradiol and environmental levels of bisphenol A (BPA)

resulted in multiple changes in cell signalling gene-specific

DNA methylation patterns in rat prostate [46]. Exposure to

BPA during early development was found to decrease

agouti gene methylation. When pregnant yellow agouti

mothers were fed BPA, yellower and unhealthier offspring

compared to those on control diets were born. However,

pregnant yellow mice administered BPA but kept on a

methyl-rich diet had offspring that were predominantly

brown [47]. Nonylphenol-treated cell lines (MCF-7 and

HepG2 cells) exhibited altered miRNA profiles of let-7c,

miR-16, -195, -200b, 200c, 205, -589, which are related to

metabolism, immune responses, apoptosis, and cell dif-

ferentiation [48]. Pre-implantation exposure of mice

embryos to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)

resulted in altered methylation status of imprinted genes

H19 and IGF2 (insulin-like growth factor 2) [49]. Other

endocrine disruptors including phthalates, polychlorinated

biphenyls (PCBs) and organochlorine pesticides may also

affect the reproductive system or induce tumour develop-

ment by altering DNA methylation [50–53].

Many other chemical stressors can alter epigenetic

markers. Exposure to oxidative stressor-like H2O2

increased HAT activity, which promoted acetylation and

induced chromatin remodelling in alveolar epithelial cells

[54]. Nucleoside analogues such as azacitidine that are

incorporated into replicating DNA, inhibit methylation and

reactivate previously-silenced genes [55]. The antisense

oligonucleotide drug MG98 that down-regulates DNMT1

showed promise in phase I clinical trials [56]. Similarly,

small molecules such as valproic acid that down-regulate

HDACs are being used to induce growth arrest and tumour

cell death [57]. Pogribny et al. [58] found Fisher 344 rat

exposure to tamoxifen, a potent hepatocarcinogen in rats,

leads to a significant up-regulation of known oncogenic

miRNAs, such as the 17-92 cluster, miR-106a, and miR-34.

1.3 Lifestyle-related and nutritional chemicals

Polyphenols such as genistein, catechins and bioflavonoids

in green tea can inhibit DNMTs and further inhibit

methylation of candidate genes [59–63]; the pathways by

which these chemicals affect DNA methylation remain

obscure [60, 62, 64]. When a woman is exposed during

pregnancy to polycyclic aromatic hydrocarbons (PAHs)

from tobacco smoke, methylation of specific genes in the

developing foetus is affected, and this is associated with a

fourfold increase in asthma symptoms in children

\5 years [65]. Exposure to airborne PAHs during preg-

nancy resulted in methylation of ACSL3 (expressed in

lung and thymus tissue) with associated parental reporting

of increased prevalence of child’s asthma \5 years age;

73 % of children with asthma exhibited ACSL3 methyla-

tion compared to 41 % who were asymptomatic [66].

Cigarette smoking can also stimulate the demethylation of

metastatic genes [67] and aberrant promoter hypermethy-

lation of death-related protein kinase genes [67] in lung

cancer, and downregulate miRNA expression in the lungs

of rats [68]. A detrimental effect on the physical and

mental development of offspring due to paternal chronic

alcohol consumption, even in the absence of in utero
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alcohol exposure, was suggested to be the result of

incorrect H19 methylation and intergenic differentially-

methylated region (IG-DMR) [69]. Cocaine abuse may

lead to histone acetylation and activation of genes, alter-

ing locomotor and rewarding responses to the drug [70].

Long-term PM10 exposure was inversely associated with

methylation in both Alu and LINE-1 (long interspersed

nuclear element 1) [71]. Jardim et al. [72] found disrup-

tion of miRNA expression in human airway cells by diesel

exhaust particles is linked to tumorigenesis-associated

pathways. A human study showed that miRNA expression

(miR-222, miR-21, and miR-146a related with oxidative

stress and inflammatory processes) could be a novel

mechanism mediating responses to PM (i.e. particulate

matter) and its metal components [73].

Chemicals sourced from nutritional sources are also

involved in DNA methylation pathways. Folic acid,

vitamin B12 and SAM are key elements in some one-

carbon metabolism pathways, which can couple the DNA

methylation pathway. DNMTs catalyze the transfer of a

methyl group from the methyl donor SAM onto the 50-

position of the cytosine ring residing, in most cases, at the

dinucleotide CG sequence. DNMTs use the molecule

SAM as their primary source of methyl groups. SAM is

manufactured via the folate and methionine pathways,

using methionine, choline, folic acid and vitamin B12

ingested in the diet. Studies have shown that DNA

methylation correlates positively with folate status in the

human body [74]. Diets with high methyl-donating

nutrients quickly modify the epigenome, especially in

early development. It has been reported [75–78] that

feeding female mice with methyl donor diets before and

after pregnancy permanently increased DNA methylation

in their offspring at the viable yellow agouti (Avy)

metastable epiallele; the feeding resulted in brown, heal-

thy offspring. The deficiency of methyl-donating folate or

choline during the late foetal or early postnatal develop-

mental stages led to hypomethylation [77]. In adults, a

methyl-deficient diet can also result in a decrease of DNA

methylation, but this is reversible with a normal diet [79].

However, high maternal dietary intake of methyl donors

during gestation was associated with a higher incidence of

asthma in mice offspring; decreased transcriptional

activity of Runx3, a gene associated with suppression of

allergic airway disease, was caused by increased DNA

methylation and this was reversible through the admin-

istration of a demethylating agent [80]. Aberrant meth-

ylation mediated by folate levels has been a suggested

risk factor in Alzheimer’s disease [81]. Dietary selenium

may also influence DNA methylation status and further

influence disease predisposition, e.g. cancer [57, 82, 83],

by affecting one-carbon metabolism in a different way

compared to folate.

2 Chemical-epigenetic interactions

Chemical-modified gene activation may involve the

ordered cascade of epigenetic events that begin with his-

tone modifications and finalize with alterations in DNA

methylation in promoter CpG islands [3, 84]. A general

hypothesis of environmental chemicals as lifelong modu-

lators of DNA hypomethylation is that such xenobiotics,

including metals, influences one-carbon metabolism

directly or indirectly [85, 86]. This may explain the pop-

ulation cohort studies that exhibit significant inverse linear

relationships between POPs or metals exposures and blood

global DNA methylation [87–89]. Patients with athero-

sclerotic vascular disease often exhibit higher homocyste-

ine and S-adenosyl homocysteine (SAHC) and lower

genomic DNA methylation status [90, 91], which is

directly connected with one-carbon pathways. Indirectly,

oxidative stress mechanisms generated by xenobiotics may

also involve aberrant epigenetic modification of DNA [85]

and histones [92] via the depletion of glutathione (GSH)

and changing the ratio of reduced GSH and its oxidized

form, GSSG (i.e. GSH disulphide). Oxidative stress may

also alter epigenetic modification via mitochondrial dys-

function [93–95]. To be inhibitors, isoflavones, polyphenol,

zinc and cadmium may inhibit DNMTs directly and indi-

rectly, and further inhibit methylation of candidate genes

[34, 59, 60, 62, 64].

Coinciding with gene-specific aberrant methylation

following exposure to endocrine disrupting chemicals,

DNMTs were abnormally expressed in some cases [45, 49].

Endocrine disrupting chemicals induced aberrant methyl-

ation of oestrogen-regulated genes [43–45]; steroid hor-

mone interacts with chromatin-modifying enzymes by

binding the receptors [16] may suggest other pathways by

which chemicals alter epigenetic markers, i.e. they may

involve the expression of target genes by modifying their

epigenetic regulators directly.

3 Concluding remarks

In the broadest sense, environmental chemicals appear to

alter epigenomic marking and, subsequently gene expres-

sion. Particular gene expression profiles can pre-dispose

both parental and subsequent generations to an elevated

susceptibility to disease [10]. Therefore, these stressors

very probably modulate disease susceptibility. The field of

environmental epigenomics is still in its infancy; however,

a growing body of information is improving our under-

standing of the interplay between epigenetic alterations,

gene expression and environmental stressors. There’s an

urgent need to study the consequences of exposures at

environmentally-relevant levels; this will allow the
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determination of real-world effects and the true relevance

of epigenetic mechanisms. It is probable that such epige-

netic markers will be used for early molecular diagnosis in

those with a predisposition to developing adult diseases

due to environmental exposure. For instance, the abnormal

methylation of Igf2 and H19 gene expression in sperm of

adults may indicate a susceptibility to diabetes in sub-

sequent generations [96]. Furthermore, as the epigenome is

modifiable or reversible, this allows for the implementation

of strategies to allow disease prevention and targeted

treatment. In summary, pollutant-induced epigenetic tox-

icities turn on or determine latent alterations in gene reg-

ulation (Tables S1, S2 and S3 online), such epimutagenic

events open up a new horizon in assessment of environ-

mental health.
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