62 research outputs found

    Geographic variations in cervical cancer risk in San Luis Potosí state, Mexico: A spatial statistical approach

    Get PDF
    El trabajo es una investigación orientada al uso de herramientas de análisis espacial para analizar la distribución del cáncer cervicouterino en el Estado de San Luis Potosí. Se consideran aspectos como el lugar de residencia de la población usuaria de los servicios de detección-tratamiento y los lugares donde se ogrecen los servicos. se aplica un modelo de accesibilidad potencial a los servicios a fin de diferenciar las ventajas y desventajas que tiene la población

    The Chemical Profile of Senna velutina Leaves and Their Antioxidant and Cytotoxic Effects

    Get PDF
    Natural products can be a source of biomolecules with antioxidant activity which are able to prevent oxidative stress-induced diseases and show antitumor activity, making them important sources of new anticancer drug prototypes. In this context, this study aimed to analyze the chemical composition of an ethanol extract of Senna velutina leaves and to assess its antioxidant and cytotoxic activities in leukemic cells. The antioxidant properties were evaluated using a DPPH free radical scavenging assay and by examining the extract's inhibition of AAPH-induced lipid peroxidation in human erythrocytes. Its cytotoxicity and possible mechanisms of action were assessed in Jurkat and K562 leukemic cell lines. The ethanol extract contained flavonoids, such as epigallocatechin, epicatechin, kaempferol heteroside, rutin, and dimeric and trimeric proanthocyanidin derivatives. The extract exhibited antioxidant activity by scavenging free radicals and antihemolytic action, and it decreased malondialdehyde content in human erythrocytes. Furthermore, the extract also induced leukemic cell death by activating intracellular calcium and caspase-3, decreasing mitochondrial membrane potential, and arresting the cell cycle in S and G2 phases. Hence, S. velutina leaf extract contains antioxidant and antileukemic biomolecules with potential applications in diseases associated with oxidative stress and in the inhibition of tumor cell proliferation.This work was supported by grants of the Fundac¸˜ao de Apoio ao Desenvolvimento do Ensino, Ciˆencia e Tecnologia do Mato Grosso do Sul (FUNDECT), Conselho Nacional de Desenvolvimento Cient´ıfico e Tecnol´ogico (CNPq), and Coordenac¸˜ao de Aperfeic¸oamento de Pessoal de N´ıvel Superior (CAPES). Edson Lucas dos Santos, Carlos Alexandre Carollo, and Edgar J. Paredes-Gamero are recipients of fellowships from Brazilian National Research Council (CNPq), Brazil.info:eu-repo/semantics/publishedVersio

    Leaf and Root Extracts from Campomanesia adamantium (Myrtaceae) Promote Apoptotic Death of Leukemic Cells via Activation of Intracellular Calcium and Caspase-3

    Get PDF
    Phytochemical studies are seeking new alternatives to prevent or treat cancer, including different types of leukemias. Campomanesia adamantium, commonly known as guavira or guabiroba, exhibits pharmacological properties including antioxidant, antimicrobial, and antiproliferative activities. Considering the anticancer potential of this plant species, the aim of this study was to evaluate the antileukemic activity and the chemical composition of aqueous extracts from the leaves (AECL) and roots (AECR) of C. adamantium and their possible mechanisms of action. The extracts were analyzed by LC-DAD-MS, and their constituents were identified based on the UV, MS, and MS/MS data. The AECL and AECR showed different chemical compositions, which were identified as main compounds glycosylated flavonols from AECL and ellagic acid and their derivatives from AECR. The cytotoxicity promoted by these extracts were evaluated using human peripheral blood mononuclear cells and Jurkat leukemic cell line. The cell death profile was evaluated using annexin-V-FITC and propidium iodide labeling. Changes in the mitochondrial membrane potential, the activity of caspases, and intracellular calcium levels were assessed. The cell cycle profile was evaluated using propidium iodide. Both extracts caused concentration-dependent cytotoxicity only in Jurkat cells via late apoptosis. This activity was associated with loss of the mitochondrial membrane potential, activation of caspases-9 and -3, changes in intracellular calcium levels, and cell cycle arrest in S-phase. Therefore, the antileukemic activity of the AECL and AECR is mediated by mitochondrial dysfunction and intracellular messengers, which activate the intrinsic apoptotic pathway. Hence, aqueous extracts of the leaves and roots of C. adamantium show therapeutic potential for use in the prevention and treatment of diseases associated the proliferation of tumor cell.Fundação de Apoio ao Desenvolvimento do Ensino, Ciência e Tecnologia do Mato Grosso do Sul (FUNDECT)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Instituto Nacional de Pesquisa do Pantanal - INPPFundação de Amparo e Desenvolvimento da Pesquisa FadespFed Univ Grande Dourados, Res Grp Biotechnol & Bioprospecting Appl Metab, Dourados, BrazilUniv Fed São Paulo, Dept Biochem, São Paulo, BrazilUniv Braz Cubas, Fac Pharm, Mogi Das Cruzes, BrazilUniv Mogi das Cruzes, Interdisciplinary Ctr Biochem Invest, Mogi Das Cruzes, BrazilUniv Fed São Paulo, Dept Pharmaceut Sci, São Paulo, BrazilUniv Fed Mato Grosso do Sul, Lab Nat Prod & Mass Spectrometry, Campo Grande, MS, BrazilUniv Fed São Paulo, Dept Biochem, São Paulo, BrazilUniv Fed São Paulo, Dept Pharmaceut Sci, São Paulo, BrazilWeb of Scienc

    In vivo efficacy and toxicity of curcumin nanoparticles in breast cancer treatment : a systematic review

    Get PDF
    Breast cancer is one of the most prevalent types of malignant tumors in the world, resulting in a high incidence of death. The development of new molecules and technologies aiming to apply more effective and safer therapy strategies has been intensively explored to overcome this situation. The association of nanoparticles with known antitumor compounds (including plant-derived molecules such as curcumin) has been considered an effective approach to enhance tumor growth suppression and reduce adverse effects. Therefore, the objective of this systematic review was to summarize published data regarding evaluations about efficacy and toxicity of curcumin nanoparticles (Cur-NPs) in in vivo models of breast cancer. The search was carried out in the databases: CINAHL, Cochrane, LILACS, Embase, FSTA, MEDLINE, ProQuest, BSV regional portal, PubMed, ScienceDirect, Scopus, and Web of Science. Studies that evaluated tumor growth in in vivo models of breast cancer and showed outcomes related to Cur-NP treatment (without association with other antitumor molecules) were included. Of the 528 initially gathered studies, 26 met the inclusion criteria. These studies showed that a wide variety of NP platforms have been used to deliver curcumin (e.g., micelles, polymeric, lipid-based, metallic). Attachment of poly(ethylene glycol) chains (PEG) and active targeting moieties were also evaluated. Cur-NPs significantly reduced tumor volume/weight, inhibited cancer cell proliferation, and increased tumor apoptosis and necrosis. Decreases in cancer stem cell population and angiogenesis were also reported. All the studies that evaluated toxicity considered Cur-NP treatment to be safe regarding hematological/biochemical markers, damage to major organs, and/or weight loss. These effects were observed in different in vivo models of breast cancer (e.g., estrogen receptor-positive, triple-negative, chemically induced) showing better outcomes when compared to treatments with free curcumin or negative controls. This systematic review supports the proposal that Cur-NP is an effective and safe therapeutic approach in in vivo models of breast cancer, reinforcing the currently available evidence that it should be further analyzed in clinical trials for breast cancer treatments
    corecore