7 research outputs found
On entropy of probability integral transformed time series
Abstract
The goal of this paper is to investigate the changes of entropy estimates when the amplitude distribution of the time series is equalized using the probability integral transformation. The data we analyzed were with known properties—pseudo-random signals with known distributions, mutually coupled using statistical or deterministic methods that include generators of statistically dependent distributions, linear and non-linear transforms, and deterministic chaos. The signal pairs were coupled using a correlation coefficient ranging from zero to one. The dependence of the signal samples is achieved by moving average filter and non-linear equations. The applied coupling methods are checked using statistical tests for correlation. The changes in signal regularity are checked by a multifractal spectrum. The probability integral transformation is then applied to cardiovascular time series—systolic blood pressure and pulse interval—acquired from the laboratory animals and represented the results of entropy estimations. We derived an expression for the reference value of entropy in the probability integral transformed signals. We also experimentally evaluated the reliability of entropy estimates concerning the matching probabilities
Central cholinergic modulation of blood pressure short-term variability
The role of neurally born acetylcholine in the central modulation of cardiovascular short-term variability was assessed using a pharmacological probe physostigmine, a cholinesterase inhibitor that can act centrally also. Experiments were performed in instrumented conscious rats. Equidistant sampling at 20 Hz of systolic arterial pressure (SAP), diastolic arterial pressure (DAP) and heart rate (HR) allowed direct spectral analysis. Spectra were analysed in the whole, very-low frequency (VLF), low-frequency (LF) and high-frequency (HF) domains. Physostigmine, but not neostigmine, increased SAP, LF SAP and HF SAP variability while neostigmine, but not physostigmine, decreased HR without affecting HR variability. Atropine methyl nitrate prevented neostigmine-induced bradycardia and potentiated the effects of physostigmine on DAP, LF DAP and HF DAP variability. Atropine sulphate, hexamethonium, phentolamine and metoprolol inhibited physostigmine-induced increase of SAP and LF SAP. Pre-treatment of rats by quinapril prevented physostigmine-induced increase of SAP, but not of LF SAP, while the V-1a antagonist prevented the increase of HF SAP. The results suggest that central cholinergic neurons facilitate but do not create LF SAP and HF SAP variability. The effect of physostigmine on LF SAP seems to be mediated via central muscarinic sites and the peripheral sympathetic system, while non-muscarinic central sites and vasopressin pathways subserve the increase of HF SAP
Clustering as a Support Technique in Phenotyping and Genotyping
Bajić, D., Mišić, N.Ž., Ostojić, M., Japundžić-Žigon, N. (2021) Clustering as a Support Technique in Phenotyping and Genotyping. Biologia Serbica 43(1): 68. ISSN 2334-6590 Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Serbia Belgrade BioInformatics Conference 2021, 21-25 June 2021, Vinča, Serbia
Vasopressin, Central Autonomic Control and Blood Pressure Regulation
Purpose of Review: We present recent advances in understanding of the role of vasopressin as a neurotransmitter in autonomic nervous system control of the circulation, emphasizing hypothalamic mechanisms in the paraventricular nucleus (PVN) involved in controlling sympathetic outflow toward the cardiovascular system. Recent Findings: Suggest that somato-dendritically released vasopressin modulates the activity of magnocellular neurons in the PVN and SON, their discharge pattern and systemic release. Advances have been made in uncovering autocrine and paracrine mechanisms controlling presympathetic neuron activity, involving intranuclear receptors, co-released neuroactive substances and glia. Summary: It is now obvious that intranuclear release of vasopressin and the co-release of neuroactive substances in the PVN, as well as the level of expression of vasopressin receptors, modulate sympathetic outflow to the cardiovascular system and determine vulnerability to stress. Further research involving patho-physiological models is needed to validate these targets and foster the development of more efficient treatment.</p