162 research outputs found

    Finite element thermomechanical simulation of steel continuous casting

    No full text
    International audienceIn continuous casting (CC), thermomechanical simulation is essential to analyze important issues: gap formation; stress and deformation of the solidified shell; bulging of product between supporting rolls in the case of steel CC; size of final product, butt-curl defect in direct chill casting of aluminium. The numerical simulation package THERCAST has been developed with the objective of supplying an accurate analysis of those phenomena, permitting to define relevant process actuators. In this paper, some characteristic features especially developed for steel continuous casting are presented and illustrated by examples of industrial application

    Effective field and universal mobility in high-k metal gate UTBB-FDSOI devices

    Get PDF
    session 1: parameter extractionInternational audienceThis paper aims at reviewing experimental and theoretical behaviors of universal mobility in high-k metal gate UTBB-FDSOI devices. Based on split-CV mobility measurements, the parameter η, characterizing the effective field, has been extracted for a large range of back voltages and temperatures in devices with various equivalent oxide thicknesses. We demonstrated that a nearly universal trend for the mobility with respect to the effective field can be obtained in the front inversion regime but is difficult to obtain in the back channel inversion regime. Keywords—FDSOI, universal mobility, effective field, coefficient η

    (Eta6-arene) ruthenium(II) complexes and metallo-papain hybrid as Lewis acid catalysts of Diels-Alder reaction in water.

    No full text
    International audienceCovalent embedding of a (eta(6)-arene) ruthenium(II) complex into the protein papain gives rise to a metalloenzyme displaying a catalytic efficiency for a Lewis acid-mediated catalysed Diels-Alder reaction enhanced by two orders of magnitude in water

    Structure of the catalytic sites in Fe/N/C-catalysts for O-2-reduction in PEM fuel cells

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugĂ€nglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.Fe-based catalytic sites for the reduction of oxygen in acidic medium have been identified by 57Fe Mössbauer spectroscopy of Fe/N/C catalysts containing 0.03 to 1.55 wt% Fe, which were prepared by impregnation of iron acetate on carbon black followed by heat-treatment in NH3 at 950 °C. Four different Fe-species were detected at all iron concentrations: three doublets assigned to molecular FeN4-like sites with their ferrous ions in a low (D1), intermediate (D2) or high (D3) spin state, and two other doublets assigned to a single Fe-species (D4 and D5) consisting of surface oxidized nitride nanoparticles (FexN, with x ≀ 2.1). A fifth Fe-species appears only in those catalysts with Fe-contents ≄0.27 wt%. It is characterized by a very broad singlet, which has been assigned to incomplete FeN4-like sites that quickly dissolve in contact with an acid. Among the five Fe-species identified in these catalysts, only D1 and D3 display catalytic activity for the oxygen reduction reaction (ORR) in the acid medium, with D3 featuring a composite structure with a protonated neighbour basic nitrogen and being by far the most active species, with an estimated turn over frequency for the ORR of 11.4 e− per site per s at 0.8 V vs. RHE. Moreover, all D1 sites and between 1/2 and 2/3 of the D3 sites are acid-resistant. A scheme for the mechanism of site formation upon heat-treatment is also proposed. This identification of the ORR-active sites in these catalysts is of crucial importance to design strategies to improve the catalytic activity and stability of these materials

    Metal Oxide Clusters on Nitrogen-Doped Carbon are Highly Selective for CO2Electroreduction to CO

    Get PDF
    The electrochemical reduction of CO2 (eCO2RR) using renewable energy is an effective approach to pursue carbon neutrality. The eCO2RR to CO is indispensable in promoting C-C coupling through bifunctional catalysis and achieving cascade conversion from CO2 to C2+. This work investigates a series of M/N-C (M = Mn, Fe, Co, Ni, Cu, and Zn) catalysts, for which the metal precursor interacted with the nitrogen-doped carbon support (N-C) at room temperature, resulting in the metal being present as (sub)nanosized metal oxide clusters under ex situ conditions, except for Cu/N-C and Zn/N-C. A volcano trend in their activity toward CO as a function of the group of the transition metal is revealed, with Co/N-C exhibiting the highest activity at -0.5 V versus RHE, while Ni/N-C shows both appreciable activity and selectivity. Operando X-ray absorption spectroscopy shows that the majority of Cu atoms in Cu/N-C form Cu0 clusters during eCO2RR, while Mn/, Fe/, Co/, and Ni/N-C catalysts maintain the metal hydroxide structures, with a minor amount of M0 formed in Fe/, Co/, and Ni/N-C. The superior activity of Fe/, Co/, and Ni/N-C is ascribed to the phase contraction and the HCO3- insertion into the layered structure of metal hydroxides. Our work provides a facile synthetic approach toward highly active and selective electrocatalysts to convert CO2 into CO. Coupled with state-of-the-art NiFe-based anodes in a full-cell device, Ni/N-C exhibits >80% Faradaic efficiency toward CO at 100 mA cm-2.The research leading to these results has received funding from the A-LEAF Project, which is funded by the European Union’s H2020 Programme under grant agreement no. 732840. ICN2 and ICIQ acknowledge funding from the FEDER/Ministerio de Ciencia e Innovación, Agencia Estatal de Investigación (projects ENE2017-85087-C3 and RTI2018-095618-B-I00) and the Generalitat de Catalunya (2017 SGR 327 and 2017- SGR-1406) and by the CERCA Programme / Generalitat de Catalunya. ICN2 and ICIQ are supported by the Severo Ochoa program from Spanish MINECO (grants no. SEV-2017-0706 and CEX2019-000925-S)

    High Performance FeNC and Mn-oxide/FeNC Layers for AEMFC Cathodes

    Get PDF
    While the Anion Exchange Membrane Fuel Cell (AEMFC) is gaining interest due to high power performance recently achieved with platinum-group-metal (PGM) catalysts, its implementation will require high-performing PGM-free cathodes. FeNC catalysts have shown high activity and stability for the Oxygen Reduction Reaction (ORR) in alkaline electrolyte; however, the production of hydrogen peroxide during ORR can lead to premature degradation of FeNC and ionomer. In order to minimize the amount of peroxide formed on FeNC, α-MnO2, ÎČ-MnO2, ÎŽ-MnO2 and α-Mn2O3 were investigated as co-catalysts, with the aim of increasing the apparent activity of FeNC-based cathodes for the hydrogen peroxide reduction reaction (HPRR). The specific activity of α-Mn2O3 for the HPRR was distinctly superior to the other Mn-oxides. The four Mn-oxides were mixed with a FeNC catalyst comprising atomically-dispersed FeNx sites, showing higher HPRR activity and higher four-electron ORR selectivity than FeNC alone. The stability of α-Mn2O3/FeNC was studied operando by on-line inductively-coupled plasma mass spectrometry, to evaluate the potential and time dependent leaching of Mn and Fe. Finally, FeNC and α-Mn2O3/FeNC were applied at the cathode of AEMFCs, both achieving similar or higher current density at 0.9 V than a Pt/C commercial cathode, and peak power densities of ca. 1 W·cm−2

    Establishing reactivity descriptors for platinum group metal (PGM)-free Fe–N–C catalysts for PEM fuel cells

    Get PDF
    We report a comprehensive analysis of the catalytic oxygen reduction reaction (ORR) reactivity of four of today's most active benchmark platinum group metal-free (PGM-free) iron/nitrogen doped carbon electrocatalysts (Fe–N–Cs). Our analysis reaches far beyond previous such attempts in linking kinetic performance metrics, such as electrocatalytic mass-based and surface area-based catalytic activity with previously elusive kinetic metrics such as the active metal site density (SD) and the catalytic turnover frequency (TOF). Kinetic ORR activities, SD and TOF values were evaluated using in situ electrochemical NO2− reduction as well as an ex situ gaseous CO cryo chemisorption. Experimental ex situ and in situ Fe surface site densities displayed remarkable quantitative congruence. Plots of SD versus TOF (“reactivity maps”) are utilized as new analytical tools to deconvolute ORR reactivities and thus enabling rational catalyst developments. A microporous catalyst showed large SD values paired with low TOF, while mesoporous catalysts displayed the opposite. Trends in Fe surface site density were linked to molecular nitrogen and Fe moieties (D1 and D2 from 57Fe Mössbauer spectroscopy), from which pore locations of catalytically active D1 and D2 sites were established. This cross-laboratory analysis, its employed experimental practices and analytical methodologies are expected to serve as a widely accepted reference for future, knowledge-based research into improved PGM-free fuel cell cathode catalysts.EC/H2020/779366/EU/Critical Raw material ElectrocatalystS replacement ENabling Designed pOst-2020 PEMFC/CRESCENDOTU Berlin, Open-Access-Mittel - 202

    Numerical transport of an arbitrary number of components.

    Get PDF
    This paper deals with the numerical transport of an arbitrary number of materials having the same velocity. The main difficulty is to derive numerical algorithms that are conservative for the mass of each component and that satisfy some inequality and equality constraints: each mass fraction has to stay in [0, 1] and the sum of all mass fractions should be 1. These constraints are satisfied by the classical upwind scheme (which is very dissipative) but not for most of non linear (high-order or anti-dissipative) schemes. Here we propose local conditions of inequality type for the finite volume fluxes of mass fractions to ensure the aforementioned constraints. More precisely, we give explicit stability intervals for each flux. This is done in the manner of [2] for hyperbolic systems, [3] for the transport of 2 components; see also [1] for the same type of inequality constraints for nonlinear conservation laws. Comparisons on two dimensional test-cases with the Young's interface reconstruction algorithm [15] show that results are qualitatively comparable. The advantages of this approach are its simplicity, its low computational cost, and its flexibility since it can deal with interfaces as well as mixing zones

    Enabling low-cost and sustainable fuel cells

    No full text
    International audienc
    • 

    corecore