896 research outputs found

    Does the spacecraft trajectory strongly affect the detection of magnetic clouds?

    Get PDF
    Magnetic clouds (MCs) are a subset of interplanetary coronal mass ejections (ICMEs) where a magnetic flux rope is detected. Is the difference between MCs and ICMEs without detected flux rope intrinsic or rather due to an observational bias? As the spacecraft has no relationship with the MC trajectory, the frequency distribution of MCs versus the spacecraft distance to the MCs axis is expected to be approximately flat. However, Lepping and Wu (2010) confirmed that it is a strongly decreasing function of the estimated impact parameter. Is a flux rope more frequently undetected for larger impact parameter? In order to answer the questions above, we explore the parameter space of flux rope models, especially the aspect ratio, boundary shape, and current distribution. The proposed models are analyzed as MCs by fitting a circular linear force-free field to the magnetic field computed along simulated crossings. We find that the distribution of the twist within the flux rope, the non-detection due to too low field rotation angle or magnitude are only weakly affecting the expected frequency distribution of MCs versus impact parameter. However, the estimated impact parameter is increasingly biased to lower values as the flux-rope cross section is more elongated orthogonally to the crossing trajectory. The observed distribution of MCs is a natural consequence of a flux-rope cross section flattened in average by a factor 2 to 3 depending on the magnetic twist profile. However, the faster MCs at 1 AU, with V>550 km/s, present an almost uniform distribution of MCs vs. impact parameter, which is consistent with round shaped flux ropes, in contrast with the slower ones. We conclude that either most of the non-MC ICMEs are encountered outside their flux rope or near the leg region, or they do not contain any

    A new Groenlandaspidid Arthrodire (Vertebrata: Placodermi) from the Famennian of Belgium

    Get PDF
    A new species of the arthrodire genus Groenlandaspis is described from the upper part of the Evieux Formation (Upper Famennian), based on several specimens collected from quarries at Modave and Villers-le-Temple,Liège Province, Belgium. It is the first occurrence of this widespread genus in continental Europe. This new species is characterized by an almost smooth dermal armour, except for some scattered tubercles on its skull roof, median dorsal and spinal plates. Its median dorsal plate is triangular in shape and almost perfectly equilateral in lateral aspect and bears large, spiniform denticles on its posterior edge. All these Groenlandaspis remains occur in micaceous, dolomitic claystones or siltstones probably deposited in a subtidal environment. Outcrops of the same area have yielded other vertebrate remains, such as the placoderms Phyllolepis and Bothriolepis, acanthodians, various piscine sarcopterygians (Holoptychius, dipnoans, a rhizodontid, Megalichthys, Eusthenodon and a large tristichopterid), and a tetrapod that is probably close to Ichthyostega. The biogeographical history of the genus Groenlandaspis is briefly outlined, and the late Frasnian-Famennian interchange of vertebrate taxa between Gondwana and Euramerica is discussed

    Superposed epoch study of ICME sub-structures near Earth and their effects on galactic cosmic rays

    Full text link
    Interplanetary coronal mass ejections (ICMEs) are the interplanetary manifestations of solar eruptions. The overtaken solar wind forms a sheath of compressed plasma at the front of ICMEs. Magnetic clouds (MCs) are a subset of ICMEs with specific properties (e.g. the presence of a flux rope). When ICMEs pass near Earth, ground observations indicate that the flux of galactic cosmic rays (GCRs) decreases. The main aims of this paper are to find: common plasma and magnetic properties of different ICME sub-structures, and which ICME properties affect the flux of GCRs near Earth. We use a superposed epoch method applied to a large set of ICMEs observed \insitu\ by the spacecraft ACE, between 1998 and 2006. We also apply a superposed epoch analysis on GCRs time series observed with the McMurdo neutron monitors. We find that slow MCs at 1 AU have on average more massive sheaths. We conclude that it is because they are more effectively slowed down by drag during their travel from the Sun. Slow MCs also have a more symmetric magnetic field and sheaths expanding similarly as their following MC, while in contrast, fast MCs have an asymmetric magnetic profile and a compressing sheath in compression. In all types of MCs, we find that the proton density and the temperature, as well as the magnetic fluctuations can diffuse within the front of the MC due to 3D reconnection. Finally, we derive a quantitative model which describes the decrease of cosmic rays as a function of the amount of magnetic fluctuations and field strength. The obtained typical profiles of sheath/MC/GCR properties corresponding to slow, mid, and fast ICMEs, can be used for forecasting/modelling these events, and to better understand the transport of energetic particles in ICMEs. They are also useful for improving future operative space weather activities.Comment: 13 pages, 6 figures, paper accepted in A&

    Electric current in flares ribbons: observations and 3D standard model

    Full text link
    We present for the first time the evolution of the photospheric electric currents during an eruptive X-class flare, accurately predicted by the standard 3D flare model. We analyze this evolution for the February 15, 2011 flare using HMI/SDO magnetic observations and find that localized currents in \J-shaped ribbons increase to double their pre-flare intensity. Our 3D flare model, developed with the OHM code, suggests that these current ribbons, which develop at the location of EUV brightenings seen with AIA imagery, are driven by the collapse of the flare's coronal current layer. These findings of increased currents restricted in localized ribbons are consistent with the overall free energy decrease during a flare, and the shape of these ribbons also give an indication on how much twisted the erupting flux rope is. Finally, this study further enhances the close correspondence obtained between the theoretical predictions of the standard 3D model and flare observations indicating that the main key physical elements are incorporated in the model.Comment: 12 pages, 7 figure

    Going nuclear: gene family evolution and vertebrate phylogeny reconciled

    Get PDF
    Gene duplications have been common throughout vertebrate evolution, introducing paralogy and so complicating phylogenctic inference from nuclear genes. Reconciled trees are one method capable of dealing with paralogy, using the relationship between a gene phylogeny and the phylogeny of the organisms containing those genes to identify gene duplication events. This allows us to infer phylogenies from gene families containing both orthologous and paralogous copies. Vertebrate phylogeny is well understood from morphological and palaeontological data, but studies using mitochondrial sequence data have failed to reproduce this classical view. Reconciled tree analysis of a database of 118 vertebrate gene families supports a largely classical vertebrate phylogeny

    Comparison of complexed species of Eu in alumina-bound and free polyacrylic acid: A spectroscopic study

    Get PDF
    International audienceThe speciation of Eu complexed with polyacrylic acid (PAA) and alumina-bound PAA (PAAads) was studied at pH 5 in 0.1 M NaClO4. Structural parameters were obtained from 7F0 → 5D0 excitation spectra measured by laser-induced fluorescence spectroscopy as well as from Eu LIII-edge extended X-ray absorption fine structure (EXAFS) spectra. The coordination mode was also investigated by infrared spectroscopy. To elucidate the nature of the complexed species, Eu–acetate complexes were used as references. The spectroscopic techniques show that two carboxylate groups with 2–3 (EuPAA) and 4–5 (EuPAAads) water molecules are coordinated to Eu in the first coordination sphere. For EuPAAads, the coordination between carboxylate groups and Eu appears to be bidendate. A similar coordination is probable for EuPAA but the EXAFS data indicate a slightly distorted coordination. The results show that the degree of freedom of carboxylate groups is not the same for free or adsorbed PAA. For PAA, the degree of freedom is constrained by the flexibility of the methylene chain. When PAA is adsorbed on alumina, the polymer chains cannot any more be treated as independent chains. One may rather assume formation of aggregates that form an organic layer at the mineral surface presenting a complex arrangement of carboxylate groups

    Première découverte d'un Arthrodire (Placodermi, Vertebrata) dans le Dévonien d'Amérique du Sud

    Get PDF
    Des plaques dermiques d'un grand Arthrodire eubrachyhtoracide (Placodermi, Vertebrata), provisoirement attribuées à un Dunkleosteidae, ont été découvertes dans les faciès détritique de la Formation de Colpacucho (Famennien), sur la Péninsule de Cumana (Lac Titicaca, Bolivie). Il s'agit de la première découverte de restes d'Arthrodires en Amérique du Sud. Ces plaques d'Arthrodire sont associées à une épine de Chondrichthyen évoquant certaines espèces de "Ctenacanthus" du Famennien et du Carbonifère inférieur (Résumé d'auteur

    The dermal skeleton of the jawless vertebrate Tremataspis mammilata (Osteostraci, stem-Gnathostomata)

    Get PDF
    Osteostracans are the closest jawless relatives of jawed vertebrates, informing the gradual assembly of the vertebrate mineralised skeleton. Conflicting interpretations of their dermal skeletal histology arise from failure to account for topological variation, obscuring their significance in elucidating vertebrate skeletal evolution. To resolve this, we characterize the cranial and trunk dermal skeleton of a single individual of Tremataspis mammilata (Osteostraci, Thyestiida) at submicron resolution using synchrotron tomography. Our results show that the architecture of the Tremataspis dermal skeleton is, for the most part, conserved over the skeleton and is broadly consistent with previous histological hypotheses based on 2-dimensional thin section study. We resolve debate over the homology of the basal layer, identifying it as osteogenic acellular isopedin rather than odontogenic elasmodine or metaplastic ossification of the stratum compactum of the dermis. We find topological variation between all dermal skeletal elements studied, and particularly between the cranial and postcranial dermal skeleton. This variation can be largely explained by reduction in differentiation due to geometric constraints imposed within smaller skeletal elements, such as scales. Our description of the dermal skeleton of Tremataspis mammilata provides a foundation for interpreting data from cursory topological samples of dermal skeletal diversity obtained in other osteostracans. This reveals general aspects of histological structure that must be primitive for osteostracans and, likely, ancestral jawed vertebrates. Finally, we draw the distinction between hypotheses and descriptions in palaeohistology
    corecore