5,417 research outputs found
Getting the best of both worlds? Linking CAPRI and GTAP for an economywide assessment of agriculture
Herd-level risk factors associated with cow mortality in Swedish dairy herds
An increase in on-farm mortality (euthanasia and death) in dairy herds has been reported in several countries in the last decade. This does not only imply possible problems with animal welfare, but it also causes economic losses to the farmer. The objective of this study was to evaluate time trends in on-farm dairy cow mortality in Sweden and identify potential herd-level risk factors. Data was retrieved on all Swedish dairy herds enrolled in the milk recording scheme between 2002 and 2010. Herds with a herd size of 40 dead or euthanized cows per 100 cow-years were excluded. Two different models were used: 1 multiple year analysis which included 6,898 herds during the period 2002 to 2010 and 1 single year analysis including 4,252 herds for the year 2010, where other variables that were not present during the entire multiple year study were analyzed. The outcome variable was the number of euthanized and dead cows per year and season. A negative binomial regression model, adjusted for clustering within herd, was applied to both models. Fixed effects in the multiple year analysis were breed, calving interval, herd size, milk yield, region, season, pasture period, and year. Fixed effects in the single year analysis were breed, calving interval, conventional vs. organic farming, herd size, housing system, milk yield, region, and season. The multiple year analysis demonstrated that MR gradually increased from 5.1 to 6.6 events per 100 cow-years during the study period. Swedish MR are consequently on par with, or even greater than, MR among dairy herds in other comparable countries. Higher mortality was associated with larger herd size, longer calving intervals, and herds that had Swedish Holstein as the predominant breed. Lower mortality was observed in herds with a higher herd average milk yield, during the fall and winter, and in organically managed herds. There were regional differences in mortality. An interaction between herd size and season was found in both models. Also, an interaction between housing system and milk yield was found in the single year analysis. This first assessment of on-farm mortality in Swedish dairy herds confirmed that the MR has increased over the last few years. The study also identified some herd-level risk factors
Recommended from our members
Improving automatic music transcription through key detection
In this paper, a method for automatic transcription of polyphonic music is proposed that exploits key information. The proposed system performs key detection using a matching technique with distributions of pitch class pairs, called Zweiklang profiles. The automatic transcription system is based on probabilistic latent component analysis, supporting templates from multiple instruments, as well as tuning deviations and frequency modulations. Key information is incorporated to the transcription system using Dirichlet priors during the parameter update stage. Experiments are performed on a polyphonic, multiple-instrument dataset of Bach chorales, where it is shown that incorporating key information improves multi-pitch detection and instrument assignment performance
Wireless Communication in Process Control Loop: Requirements Analysis, Industry Practices and Experimental Evaluation
Wireless communication is already used in process automation for process monitoring. The next stage of implementation of wireless technology in industrial applications is for process control. The need for wireless networked control systems has evolved because of the necessity for extensibility, mobility, modularity, fast deployment, and reduced installation and maintenance cost. These benefits are only applicable given that the wireless network of choice can meet the strict requirements of process control applications, such as latency. In this regard, this paper is an effort towards identifying current industry practices related to implementing process control over a wireless link and evaluates the suitability of ISA100.11a network for use in process control through experiments
Deconvolving Instrumental and Intrinsic Broadening in Excited State X-ray Spectroscopies
Intrinsic and experimental mechanisms frequently lead to broadening of
spectral features in excited-state spectroscopies. For example, intrinsic
broadening occurs in x-ray absorption spectroscopy (XAS) measurements of heavy
elements where the core-hole lifetime is very short. On the other hand,
nonresonant x-ray Raman scattering (XRS) and other energy loss measurements are
more limited by instrumental resolution. Here, we demonstrate that the
Richardson-Lucy (RL) iterative algorithm provides a robust method for
deconvolving instrumental and intrinsic resolutions from typical XAS and XRS
data. For the K-edge XAS of Ag, we find nearly complete removal of ~9.3 eV FWHM
broadening from the combined effects of the short core-hole lifetime and
instrumental resolution. We are also able to remove nearly all instrumental
broadening in an XRS measurement of diamond, with the resulting improved
spectrum comparing favorably with prior soft x-ray XAS measurements. We present
a practical methodology for implementing the RL algorithm to these problems,
emphasizing the importance of testing for stability of the deconvolution
process against noise amplification, perturbations in the initial spectra, and
uncertainties in the core-hole lifetime.Comment: 35 pages, 13 figure
Building a Small and Informative Phylogenetic Supertree
We combine two fundamental, previously studied optimization problems related to the construction of phylogenetic trees called maximum rooted triplets consistency (MAXRTC) and minimally resolved supertree (MINRS) into a new problem, which we call q-maximum rooted triplets consistency (q-MAXRTC). The input to our new problem is a set R of resolved triplets (rooted, binary phylogenetic trees with three leaves each) and the objective is to find a phylogenetic tree with exactly q internal nodes that contains the largest possible number of triplets from R. We first prove that q-MAXRTC is NP-hard even to approximate within a constant ratio for every fixed q >= 2, and then develop various polynomial-time approximation algorithms for different values of q. Next, we show experimentally that representing a phylogenetic tree by one having much fewer nodes typically does not destroy too much triplet branching information. As an extreme example, we show that allowing only nine internal nodes is still sufficient to capture on average 80% of the rooted triplets from some recently published trees, each having between 760 and 3081 internal nodes. Finally, to demonstrate the algorithmic advantage of using trees with few internal nodes, we propose a new algorithm for computing the rooted triplet distance between two phylogenetic trees over a leaf label set of size n that runs in O(q n) time, where q is the number of internal nodes in the smaller tree, and is therefore faster than the currently best algorithms for the problem (with O(n log n) time complexity [SODA 2013, ESA 2017]) whenever q = o(log n)
Reconstructing phylogenetic level-1 networks from nondense binet and trinet sets
Binets and trinets are phylogenetic networks with two and three leaves, respectively. Here we consider the problem of deciding if there exists a binary level-1 phylogenetic network displaying a given set T of binary binets or trinets over a taxon set X, and constructing such a network whenever it exists. We show that this is NP-hard for trinets but polynomial-time solvable for binets. Moreover, we show that the problem is still polynomial-time solvable for inputs consisting of binets and trinets as long as the cycles in the trinets have size three. Finally, we present an O(3^{|X|} poly(|X|)) time algorithm for general sets of binets and trinets. The latter two algorithms generalise to instances containing level-1 networks with arbitrarily many leaves, and thus provide some of the first supernetwork algorithms for computing networks from a set of rooted 1 phylogenetic networks
Succinct Indexable Dictionaries with Applications to Encoding -ary Trees, Prefix Sums and Multisets
We consider the {\it indexable dictionary} problem, which consists of storing
a set for some integer , while supporting the
operations of \Rank(x), which returns the number of elements in that are
less than if , and -1 otherwise; and \Select(i) which returns
the -th smallest element in . We give a data structure that supports both
operations in O(1) time on the RAM model and requires bits to store a set of size , where {\cal B}(n,m) = \ceil{\lg
{m \choose n}} is the minimum number of bits required to store any -element
subset from a universe of size . Previous dictionaries taking this space
only supported (yes/no) membership queries in O(1) time. In the cell probe
model we can remove the additive term in the space bound,
answering a question raised by Fich and Miltersen, and Pagh.
We present extensions and applications of our indexable dictionary data
structure, including:
An information-theoretically optimal representation of a -ary cardinal
tree that supports standard operations in constant time,
A representation of a multiset of size from in bits that supports (appropriate generalizations of) \Rank
and \Select operations in constant time, and
A representation of a sequence of non-negative integers summing up to
in bits that supports prefix sum queries in constant
time.Comment: Final version of SODA 2002 paper; supersedes Leicester Tech report
2002/1
- âŠ