897 research outputs found

    Dynamic impacts of a financial reform of the CAP on regional land use, income and overall growth

    Get PDF
    In this paper we investigate the impacts of abolishing the Common Agricultural Policy (CAP) for the post-2013 European Union (EU) financial perspective and the impacts of re-investing the released funds on research and development (R&D). We apply a linked system of models to analyze the impacts for the EU member states. The linked system consists of five land-use sector models (agriculture, forestry, urban area, tourism and transport infrastructure), which are connected to a macro-econometric model. Additionally, a land cover model is used to disaggregate land use countries to a 1 kmÂČ grid. Three scenarios are analysed. In the “baseline” currently decided policies are assumed to be continued until 2025. In the “tax rebate” scenario agricultural support (first pillar) is removed, and the member states’ contributions to EU lowered. In the “R&D investments” scenario agricultural support is also removed, and the released funds are used to increase general R&D efforts in the EU. We find that in both liberalization scenarios, agricultural producer prices drop compared to the baseline. Agricultural production drops too, but less so in the “R&D investment” scenario due to productivity gains resulting from the increased R&D spending. In some countries, the productivity gains totally offset the negative impact of liberalisation on agricultural production. Smaller agricultural production implies less agricultural land use, and the more so in the “R&D Investment” scenario where productivity increases. The fall in agricultural production and prices negatively affects economic activity and households’ purchasing power, but the reduced direct taxation compensates this effect and results in a GDP gain of 0.53% and 0.8 million additional jobs. In “R&D investment” GDP gain reaches 2.57% and yields 2.95 million additional jobs in EU in 2025. The GDP, consumption and employment gains in the “R&D Investment” scenario widely exceed the losses in the agriculture sectors. The analysis indicates that if no external effects of agriculture are considered, then the CAP is an inefficient use of tax money, and that a considerable contribution to reaching the goals of the Lisbon agenda would be achieved if the same amount of money was instead invested in R&D.CAP reform, economical growth, land use, Agricultural and Food Policy, Land Economics/Use,

    Conservation of core complex subunits shaped the structure and function of photosystem I in the secondary endosymbiont alga Nannochloropsis gaditana

    Get PDF
    Photosystem I (PSI) is a pigment protein complex catalyzing the light-driven electron transport from plastocyanin to ferredoxin in oxygenic photosynthetic organisms. Several PSI subunits are highly conserved in cyanobacteria, algae and plants, whereas others are distributed differentially in the various organisms. Here we characterized the structural and functional properties of PSI purified from the heterokont alga Nannochloropsis gaditana, showing that it is organized as a supercomplex including a core complex and an outer antenna, as in plants and other eukaryotic algae. Differently from all known organisms, the N. gaditana PSI supercomplex contains five peripheral antenna proteins, identified by proteome analysis as type-R light-harvesting complexes (LHCr4-8). Two antenna subunits are bound in a conserved position, as in PSI in plants, whereas three additional antennae are associated with the core on the other side. This peculiar antenna association correlates with the presence of PsaF/J and the absence of PsaH, G and K in the N. gaditana genome and proteome. Excitation energy transfer in the supercomplex is highly efficient, leading to a very high trapping efficiency as observed in all other PSI eukaryotes, showing that although the supramolecular organization of PSI changed during evolution, fundamental functional properties such as trapping efficiency were maintained

    Serum homocysteine is weakly associated with von Willebrand factor and soluble vascular cell adhesion molecule 1, but not with C-reactive protein in type 2 diabetic and nondiabetic subjects: the Hoorn Study.

    Get PDF
    Background: Hyperhomocysteinaemia may constitute an independent risk factor for cardiovascular disease, but it is still unclear by which pathophysiological mechanisms homocysteine (tHcy) may promote atherothrombosis. The aim of this study was firstly to examine whether tHcy is associated with endothelial dysfunction, increased adherence of leukocytes, and/or chronic low-grade inflammation, as estimated from plasma levels of von Willebrand factor (vWf), soluble vascular cell adhesion molecule 1 (sVCAM-1) and C-reactive protein (CRP), respectively. Secondly we investigated whether the presence of type 2 diabetes modifies these associations. Materials and Methods: Six hundred and ten subjects of a general population of middle-aged and elderly subjects, 170 of whom had type 2 diabetes, participated in this cross-sectional study. Linear regression analyses were used to study whether tHcy was associated with vWf, sVCAM-1 and CRP, and whether the presence of diabetes modified these associations. Results: After adjustment for confounders, tHcy was significantly but weakly associated with vWf (ÎČ=0·15, P=0·05) and sVCAM-1 (ÎČ=0·082, P=0·04). tHcy was not significantly associated with CRP (ÎČ=0·02, P=0·91). The presence of diabetes did not significantly modify these associations. Conclusions: This study provides evidence that tHcy is, at most, weakly associated with endothelial dysfunction as estimated from plasma vWf, and with leukocyte adhesion as estimated from plasma sVCAM-1. tHcy was not significantly associated with chronic low-grade inflammation as estimated from plasma CRP. Our data thus suggest that the link between tHcy and atherothrombosis cannot be explained by associations of tHcy with vWf, sVCAM-1 or CRP

    The supramammillary nucleus controls anxiety-like behavior; key role of GLP-1R

    Get PDF
    Anxiety disorders are among the most prevalent categories of mental illnesses. The gut-brain axis, along with gastrointestinally-derived neuropeptides, like glucagon-like peptide-1 (GLP-1), are emerging as potential key regulators of emotionality, including anxiety behavior. However, the neuroanatomical substrates from which GLP-1 exerts its anxiogenic effect remain poorly characterized. Here we focus on a relatively new candidate nucleus, the supramammillary nucleus (SuM), located just caudal to the lateral hypothalamus and ventral to the ventral tegmental area. Our focus on the SuM is supported by previous data showing expression of GLP-1R mRNA throughout the SuM and activation of the SuM during anxiety-inducing behaviors in rodents. Data show that chemogenetic activation of neurons in the SuM results in an anxiolytic response in male and female rats. In contrast, selective activation of SuM GLP-1R, by microinjection of a GLP-1R agonist exendin-4 into the SuM resulted in potent anxiety-like behavior, measured in both open field and elevated plus maze tests in male and female rats. This anxiogenic effect of GLP-1R activation persisted after high-fat diet exposure. Importantly, reduction of GLP-1R expression in the SuM, by AAV-shRNA GLP-1R knockdown, resulted in a clear anxiolytic response; an effect only observed in female rats. Our data identify a new neural substrate for GLP-1 control of anxiety-like behavior and indicate that the SuM GLP-1R are sufficient for anxiogenesis in both sexes, but necessary only in females

    Adaptive wild bootstrap tests for a unit root with nonstationary volatility

    Get PDF
    Recent research has emphasised that permanent changes in the innovation variance (caused by structural shifts or an integrated volatility process) lead to size distortions in conventional unit root tests. Cavaliere and Taylor (2008) show how these size distortions may be resolved using the wild bootstrap. In this paper, we first derive the asymptotic power envelope for the unit root testing problem when the nonstationary volatility process is known. Next, we show that under suitable conditions, adaptation with respect to the volatility process is possible, in the sense that nonparametric estimation of the volatility process leads to the same asymptotic power envelope. Implementation of the resulting test involves cross-validation and the wild bootstrap. A Monte Carlo experiment shows that the asymptotic results are reflected in finite sample properties, and an empirical analysis of real exchange rates illustrates the applicability of the proposed procedures

    Wandering behaviour prevents inter and intra oceanic speciation in a coastal pelagic fish

    Get PDF
    Small pelagic fishes have the ability to disperse over long distances and may present complex evolutionary histories. Here, Old World Anchovies (OWA) were used as a model system to understand genetic patterns and connectivity of fish between the Atlantic and Pacific basins. We surveyed 16 locations worldwide using mtDNA and 8 microsatellite loci for genetic parameters, and mtDNA (cyt b; 16S) and nuclear (RAG1; RAG2) regions for dating major lineage-splitting events within Engraulidae family. The OWA genetic divergences (0-0.4%) are compatible with intra-specific divergence, showing evidence of both ancient and contemporary admixture between the Pacific and Atlantic populations, enhanced by high asymmetrical migration from the Pacific to the Atlantic. The estimated divergence between Atlantic and Pacific anchovies (0.67 [0.53-0.80] Ma) matches a severe drop of sea temperature during the Gunz glacial stage of the Pleistocene. Our results support an alternative evolutionary scenario for the OWA, suggesting a coastal migration along south Asia, Middle East and eastern Africa continental platforms, followed by the colonization of the Atlantic via the Cape of the Good Hope.Portuguese Foundation for Science & Technology (FCT) [SFRH/BD/36600/2007]; FCT [UID/MAR/04292/2013, SFRH/BPD/65830/2009]; FCT strategic plan [UID/Multi/04326/2013]info:eu-repo/semantics/publishedVersio

    Psychometric precision in phenotype definition is a useful step in molecular genetic investigation of psychiatric disorders

    Get PDF
    Affective disorders are highly heritable, but few genetic risk variants have been consistently replicated in molecular genetic association studies. The common method of defining psychiatric phenotypes in molecular genetic research is either a summation of symptom scores or binary threshold score representing the risk of diagnosis. Psychometric latent variable methods can improve the precision of psychiatric phenotypes, especially when the data structure is not straightforward. Using data from the British 1946 birth cohort, we compared summary scores with psychometric modeling based on the General Health Questionnaire (GHQ-28) scale for affective symptoms in an association analysis of 27 candidate genes (249 single-nucleotide polymorphisms (SNPs)). The psychometric method utilized a bi-factor model that partitioned the phenotype variances into five orthogonal latent variable factors, in accordance with the multidimensional data structure of the GHQ-28 involving somatic, social, anxiety and depression domains. Results showed that, compared with the summation approach, the affective symptoms defined by the bi-factor psychometric model had a higher number of associated SNPs of larger effect sizes. These results suggest that psychometrically defined mental health phenotypes can reflect the dimensions of complex phenotypes better than summation scores, and therefore offer a useful approach in genetic association investigations

    Parkinson's Disease and Cancer

    Get PDF
    Epidemiological evidence suggests a reduced incidence of many common types of cancers in individuals with Parkinson's disease (PD). Parkinson's disease and cancer are two diseases that result from an excessive signaling by one of two forces driving cells to opposite directions. PD results from the excessive death of dopaminergic neurons in the substantia nigra pars compacta (SNc) in the brain, while uncontrolled growth is the key property of cancer. Parkinson's disease is a complex disorder, probably due in most of the cases to the interaction of environment and genes. Many genes responsible for familial forms of PD are supposed to have a supportive role in regulating or maintaining the cell cycle, a fact that allows us to assume their interaction in tumorigenesis. Understanding the nature of these processes may help researchers find new and more efficacious therapeutic approaches for both diseases
    • 

    corecore