21,389 research outputs found
Non-Abelian Giant Gravitons
We argue that the giant graviton configurations known from the literature
have a complementary, microscopical description in terms of multiple
gravitational waves undergoing a dielectric (or magnetic moment) effect. We
present a non-Abelian effective action for these gravitational waves with
dielectric couplings and show that stable dielectric solutions exist. These
solutions agree in the large limit with the giant graviton configurations
in the literature.Comment: 8 pages. Contribution to the proceedings of the RTN workshop in
Leuven, Belgium, September 200
Mean-field scaling function of the universality class of absorbing phase transitions with a conserved field
We consider two mean-field like models which belong to the universality class
of absorbing phase transitions with a conserved field. In both cases we derive
analytically the order parameter as function of the control parameter and of an
external field conjugated to the order parameter. This allows us to calculate
the universal scaling function of the mean-field behavior. The obtained
universal function is in perfect agreement with recently obtained numerical
data of the corresponding five and six dimensional models, showing that four is
the upper critical dimension of this particular universality class.Comment: 8 pages, 2 figures, accepted for publication in J. Phys.
Random Resistor-Diode Networks and the Crossover from Isotropic to Directed Percolation
By employing the methods of renormalized field theory we show that the
percolation behavior of random resistor-diode networks near the multicritical
line belongs to the universality class of isotropic percolation. We construct a
mesoscopic model from the general epidemic process by including a relevant
isotropy-breaking perturbation. We present a two-loop calculation of the
crossover exponent . Upon blending the -expansion result with
the exact value for one dimension by a rational approximation, we
obtain for two dimensions . This value is in agreement
with the recent simulations of a two-dimensional random diode network by Inui,
Kakuno, Tretyakov, Komatsu, and Kameoka, who found an order parameter exponent
different from those of isotropic and directed percolation.
Furthermore, we reconsider the theory of the full crossover from isotropic to
directed percolation by Frey, T\"{a}uber, and Schwabl and clear up some minor
shortcomings.Comment: 24 pages, 2 figure
AgroDataCube and AGINFRA+: Operationalising Big Data for Agricultural Informatics
Big Data methods and tools are becoming widely adopted by the ICT industry and create new opportunities for data intensive science in the agro-environmental domain. However, Big Data adoption is still in its infancy for Agricultural Information Systems, and many barriers still exist for wider use of big data analysis ..
Robust and Efficient Uncertainty Quantification and Validation of RFIC Isolation
Modern communication and identification products impose demanding constraints on reliability of components. Due to this statistical constraints more and more enter optimization formulations of electronic products. Yield constraints often require efficient sampling techniques to obtain uncertainty quantification also at the tails of the distributions. These sampling techniques should outperform standard Monte Carlo techniques, since these latter ones are normally not efficient enough to deal with tail probabilities. One such a technique, Importance Sampling, has successfully been applied to optimize Static Random Access Memories (SRAMs) while guaranteeing very small failure probabilities, even going beyond 6-sigma variations of parameters involved. Apart from this, emerging uncertainty quantifications techniques offer expansions of the solution that serve as a response surface facility when doing statistics and optimization. To efficiently derive the coefficients in the expansions one either has to solve a large number of problems or a huge combined problem. Here parameterized Model Order Reduction (MOR) techniques can be used to reduce the work load. To also reduce the amount of parameters we identify those that only affect the variance in a minor way. These parameters can simply be set to a fixed value. The remaining parameters can be viewed as dominant. Preservation of the variation also allows to make statements about the approximation accuracy obtained by the parameter-reduced problem. This is illustrated on an RLC circuit. Additionally, the MOR technique used should not affect the variance significantly. Finally we consider a methodology for reliable RFIC isolation using floor-plan modeling and isolation grounding. Simulations show good comparison with measurements
Anomalously strong pinning of the filling factor nu=2 in epitaxial graphene
We explore the robust quantization of the Hall resistance in epitaxial
graphene grown on Si-terminated SiC. Uniquely to this system, the dominance of
quantum over classical capacitance in the charge transfer between the substrate
and graphene is such that Landau levels (in particular, the one at exactly zero
energy) remain completely filled over an extraordinarily broad range of
magnetic fields. One important implication of this pinning of the filling
factor is that the system can sustain a very high nondissipative current. This
makes epitaxial graphene ideally suited for quantum resistance metrology, and
we have achieved a precision of 3 parts in 10^10 in the Hall resistance
quantization measurements
Exploring prospects of novel drugs for tuberculosis
Tuberculosis remains a disease with an enormous impact on public health worldwide. With the continuously increasing epidemic of drug-resistant tuberculosis, new drugs are desperately needed. However, even for the treatment of drug-sensitive tuberculosis, new drugs are required to shorten the treatment duration and thereby prevent development of drug resistance. Within the past ten years, major advances in tuberculosis drug research have been made, leading to a considerable number of antimycobacterial compounds which are now in the pipeline. Here we discuss a number of these novel promising tuberculosis drugs, as well as the discovery of two new potential drug targets for the development of novel effective drugs to curb the tuberculosis pandemic, ie, the coronin 1 and protein kinase G pathways. Protein kinase G is secreted by mycobacteria and is responsible for blocking lysosomal delivery within the macrophage. Coronin 1 is responsible for activating the phosphatase, calcineurin, and thereby preventing phagosome-lysosome fusion within the macrophage. Blocking these two pathways may lead to rapid killing of mycobacteri
Absorbing phase transition in a conserved lattice gas with random neighbor particle hopping
A conserved lattice gas with random neighbor hopping of active particles is
introduced which exhibits a continuous phase transition from an active state to
an absorbing non-active state. Since the randomness of the particle hopping
breaks long range spatial correlations our model mimics the mean-field scaling
behavior of the recently introduced new universality class of absorbing phase
transitions with a conserved field. The critical exponent of the order
parameter is derived within a simple approximation. The results are compared
with those of simulations and field theoretical approaches.Comment: 5 pages, 3 figures, accepted for publication in J. Phys.
- …