656 research outputs found

    Systematic X-ray absorption study of hole doping in BSCCO - phases

    Full text link
    X-ray absorption spectroscopy (XAS) on the O 1s threshold was applied to Bi-based, single crystalline high temperature superconductors (HTc's), whose hole densities in the CuO2 planes was varied by different methods. XAS gives the intensity of the so-called pre-peak of the O 1s line due to the unoccupied part of the Zhang-Rice (ZR) singlet state. The effects of variation of the number n of CuO2 - planes per unit cell (n = 1,2,3) and the effect of La-substitution for Sr for the n = 1 and n = 2 phase were studied systematically. Furthermore the symmetry of the states could be probed by the polarization of the impinging radiation.Comment: 4 pages, 2 figures, to appear in the proceedings of SCES2001, Ann Arbor, August 6-10, 200

    Comparative study of the electronic structures of the In and Sn/In2O3 (111) interfaces

    Full text link
    The electronic structure of the transparent semiconductor In2O3 has been studied by angle resolved photoemission spectroscopy upon deposition of metallic indium and also tin on the surface of the semiconductor. By deposition of metallic indium on In2O3 (111) single crystals, we detected the formation of a free-electron like band of effective mass (0.38+-0.05) m0. At low coverages, metallic In shifts the Fermi level of In2O3 to higher energies and a new electronic state forms at the metal/semiconductor interface. This state of two-dimensional character (2D-electron gas) is completely responsible for the electrical conduction in In2O3 (111) at the surface region and has a band dispersion, which does not correspond to the previously found surface accumulation layers in this material. Despite the similarity of the electronic properties of In and Sn, a larger downward banding was observed by Sn coverage, which was not accompanied by the appearance of the surface state.Comment: 5 pages, 3 figure

    Quasiparticles and Energy Scaling in Bi2_2Sr2_2Can−1_{n-1}Cun_nO2n+4_{2n+4} (n\it{n}=1-3): Angle-Resolved Photoemission Spectroscopy

    Full text link
    Angle-resolved photoemission spectroscopy (ARPES) has been performed on the single- to triple-layered Bi-family high-{\it Tc_c} superconductors (Bi2_2Sr2_2Can−1_{n-1}Cun_nO2n+4_{2n+4}, n\it{n}=1-3). We found a sharp quasiparticle peak as well as a pseudogap at the Fermi level in the triple-layered compound. Comparison among three compounds has revealed a universal rule that the characteristic energies of superconducting and pseudogap behaviors are scaled with the maximum {\it Tc_c}.Comment: 4 pages, 4 figure

    Formal Framework for Property-driven Obfuscations

    Get PDF
    We study the existence and the characterization of function transformers that minimally or maximally modify a function in order to reveal or conceal a certain property. Based on this general formal framework we develop a strategy for the design of the maximal obfuscating transformation that conceals a given property while revealing the desired observational behaviou

    Novel Fine-Structure in the Low-Energy Excitation Spectrum of a High-Tc Superconductor by Polarization Dependent Photoemission

    Full text link
    Angle-resolved photoemission spectroscopy is performed on single crystals of the single-layer high-Tc superconductor Bi(2)Sr(2-x)La(x)CuO(6+d) at optimal doping (x=0.4) in order to study in great detail the Zhang-Rice (ZR) singlet band at the Fermi level. Besides the high crystal quality the advantages of a single-layer material are the absence of bilayer effects and the distinct reduction of thermal broadening. Due to the high energy and angle resolution and, most important, due to the controlled variation of the polarization vector of the synchrotron radiation the emission from the ZR singlet band reveals a distinct fine-structure. It consists of two maxima, the first showing only weak and the second at EF extremely strong polarization dependence. However, our observation has enormous consequences for line shape analyses and the determination of pseudo gaps by photoemission.Comment: 10 pages, 2 figures. to appear in PRB (Rapid Comm.

    Strong spin triplet contribution of the first removal state in the insulating regime of Bi2Sr2Ca1-xYxCu2O8+delta

    Full text link
    The experimental dispersion of the first removal state in the insulating regime of Bi2Sr2Ca1-xYxCu2O8+delta is found to differ significantly from that of other parent materials: oxyclorides and La2CuO4 . For Y-contents of 0.92 > x > 0.55 due to nonstoichiometric effects in the Bi-O layers, the hole concentration in the CuO2 -layers is almost constant and on the contrary the crystal lattice parameters a,b,c change very strongly. This (a,b) parameter increase and c parameter decrease results in an unconventional three peak structure at (0,0);(pi/2, pi/2);(pi,pi) for x=0.92. We can describe the experimental data only beyond the framework of the 3-band pd-model involving the representations of a new triplet counterpart for the Zhang-Rice singlet state.Comment: 16 pages, 4 figure

    Spectroscopic signatures of spin-charge separation in the quasi-one-dimensional organic conductor TTF-TCNQ

    Get PDF
    The electronic structure of the quasi-one-dimensional organic conductor TTF-TCNQ is studied by angle-resolved photoelectron spectroscopy (ARPES). The experimental spectra reveal significant discrepancies to band theory. We demonstrate that the measured dispersions can be consistently mapped onto the one-dimensional Hubbard model at finite doping. This interpretation is further supported by a remarkable transfer of spectral weight as function of temperature. The ARPES data thus show spectroscopic signatures of spin-charge separation on an energy scale of the conduction band width.Comment: 4 pages, 4 figures; to appear in PR

    Lifetime of d-holes at Cu surfaces: Theory and experiment

    Get PDF
    We have investigated the hole dynamics at copper surfaces by high-resolution angle-resolved photoemission experiments and many-body quasiparticle GW calculations. Large deviations from a free-electron-like picture are observed both in the magnitude and the energy dependence of the lifetimes, with a clear indication that holes exhibit longer lifetimes than electrons with the same excitation energy. Our calculations show that the small overlap of d- and sp-states below the Fermi level is responsible for the observed enhancement. Although there is qualitative good agreement of our theoretical predictions and the measured lifetimes, there still exist some discrepancies pointing to the need of a better description of the actual band structure of the solid.Comment: 15 pages, 7 figures, 1 table, to appear in Phys. Rev.
    • …
    corecore