The electronic structure of the quasi-one-dimensional organic conductor
TTF-TCNQ is studied by angle-resolved photoelectron spectroscopy (ARPES). The
experimental spectra reveal significant discrepancies to band theory. We
demonstrate that the measured dispersions can be consistently mapped onto the
one-dimensional Hubbard model at finite doping. This interpretation is further
supported by a remarkable transfer of spectral weight as function of
temperature. The ARPES data thus show spectroscopic signatures of spin-charge
separation on an energy scale of the conduction band width.Comment: 4 pages, 4 figures; to appear in PR