106 research outputs found

    Thermal stress cycling of GaAs solar cells

    Get PDF
    A thermal cycling experiment was performed on GaAs solar cells to establish the electrical and structural integrity of these cells under the temperature conditions of a simulated low-Earth orbit of 3-year duration. Thirty single junction GaAs cells were obtained and tests were performed to establish the beginning-of-life characteristics of these cells. The tests consisted of cell I-V power output curves, from which were obtained short-circuit current, open circuit voltage, fill factor, and cell efficiency, and optical micrographs, spectral response, and ion microprobe mass analysis (IMMA) depth profiles on both the front surfaces and the front metallic contacts of the cells. Following 5,000 thermal cycles, the performance of the cells was reexamined in addition to any factors which might contribute to performance degradation. It is established that, after 5,000 thermal cycles, the cells retain their power output with no loss of structural integrity or change in physical appearance

    Coherent Destruction of Coulomb Blockade Peaks in Molecular Junctions

    Full text link
    Coherent electronic transport in single-molecule junctions is investigated in the Coulomb blockade regime. Both the transmission phase and probability are calculated for junctions with various contact symmetries. A dramatic suppression of the Coulomb blockade peaks is predicted for junctions where multiple atomic orbitals of the molecule couple to a single electrode although the charging steps are unaffected.Comment: 6 pages, 4 figure

    Epigenetic marks in the mature pollen of Quercus suber L. (Fagaceae)

    Get PDF
    We have analysed the distribution of epigenetic marks for histone modifications at lysine residues H3 and H4, and DNA methylation, in the nuclei of mature pollen cells of the Angiosperm tree Quercus suber; a monoecious wind pollinated species with a protandrous system, and a long post-pollination period. The ultrasonic treatment developed for the isolation of pollen nuclei proved to be a fast and reliable method, preventing the interference of cell wall autofluorescence in the in situ immunolabelling assays. In contrast with previous studies on herbaceous species with short progamic phases, our results are consistent with a high level of silent (5-mC and H3K9me2) epigenetic marks on chromatin of the generative nucleus, and the prevalence of active marks (H3K9me3 and H4Kac) in the vegetative nucleus. The findings are discussed in terms of the pollination/fertilization timing strategy adopted by this plant specie

    The number of transmission channels through a single-molecule junction

    Full text link
    We calculate transmission eigenvalue distributions for Pt-benzene-Pt and Pt-butadiene-Pt junctions using realistic state-of-the-art many-body techniques. An effective field theory of interacting π\pi-electrons is used to include screening and van der Waals interactions with the metal electrodes. We find that the number of dominant transmission channels in a molecular junction is equal to the degeneracy of the molecular orbital closest to the metal Fermi level.Comment: 9 pages, 8 figure

    Biological measurement beyond the quantum limit

    Full text link
    Quantum noise places a fundamental limit on the per photon sensitivity attainable in optical measurements. This limit is of particular importance in biological measurements, where the optical power must be constrained to avoid damage to the specimen. By using non-classically correlated light, we demonstrated that the quantum limit can be surpassed in biological measurements. Quantum enhanced microrheology was performed within yeast cells by tracking naturally occurring lipid granules with sensitivity 2.4 dB beyond the quantum noise limit. The viscoelastic properties of the cytoplasm could thereby be determined with a 64% improved measurement rate. This demonstration paves the way to apply quantum resources broadly in a biological context

    Quantum coherent control of highly multipartite continuous-variable entangled states by tailoring parametric interactions

    Full text link
    The generation of continuous-variable multipartite entangled states is important for several protocols of quantum information processing and communication, such as one-way quantum computation or controlled dense coding. In this article we theoretically show that multimode optical parametric oscillators can produce a great variety of such states by an appropriate control of the parametric interaction, what we accomplish by tailoring either the spatio-temporal shape of the pump, or the geometry of the nonlinear medium. Specific examples involving currently available optical parametric oscillators are given, hence showing that our ideas are within reach of present technology.Comment: 14 pages, 5 figure

    Age-dependency of the prognostic impact of tumor genomics in localized resectable MYCN non-amplified neuroblastomas Report from the SIOPEN Biology Group on the LNESG Trials

    Get PDF
    BACKGROUND: Biology based treatment reduction, i.e. surgery alone also in case of not totally resected tumors, was advised in neuroblastoma patients with localized resectable disease without MYCN amplification. However, whether the genomic background of these tumors may influence outcome was unknown and therefore scrutinized in a meta-analysis comprising two prospective therapy studies and a ‘validation’ cohort. PATIENTS AND METHODS: Diagnostic samples were derived from 406 INSS stages 1/2A/2B tumors from three cohorts: LNESGI/II and COG. Genomic data were analyzed in two age groups (cut-off: 18 months) and quality controlled by the SIOPEN Biology Group. RESULTS: In both patient age groups stage 2 tumors led to similarly reduced event-free survival (5y-EFS: 83+3% versus 80+4%), but overall survival was only decreased in patients >18m (5y-OS: 97+1% versus 87+4%; p=0.001). In the latter age subgroup, only tumors with SCA led to relapses, with 11q loss as the strongest marker (5y-EFS: 40+15% versus 89+5%; p18m but not <18m. CONCLUSION: The tumor genomic make-up of resectable non-MYCN amplified stage 2 neuroblastomas has a distinct age-dependent prognostic impact in neuroblastoma patients. While in the younger age group tumors with unfavourable (SCA) and favorable genetics showed relapses, both without worsening OS, in the older age group only tumors with unfavorable genetics led to relapses and decreased OS.N/

    Longitudinal assessment of PCBs and chlorinated pesticides in pregnant women from Western Canada

    Get PDF
    BACKGROUND: Maternal exposures to organochlorines prior to pregnancy are considered a risk to neonatal welfare, specifically in relation to neurocognitive functions. There is growing interest in the evaluation of maternal blood testing as a marker for fetal exposure as well as the variable geographic distribution of these priority chemicals. METHODS: Three hundred and twenty-three women in the second trimester of pregnancy entered the study at a prenatal clinic providing genetic counselling information. Subjects who had an indication for genetic amniocentesis based on late maternal age were eligible to participate. Two hundred and thirty-eight completed an environmental questionnaire. A sample of amniotic fluid was taken for karyotype analysis in 323 women and blood samples during pregnancy (209), at birth (105) and from the umbilical cord (97) and breast milk (47) were also collected. These samples were tested for 29 PCB congeners and organochlorine pesticides. RESULTS: The concentrations of PCB 153 in these media were relatively low in relation to other studies. Σ PCBs measurements in samples taken during the second trimester of pregnancy, at birth and in the umbilical cord were strongly correlated. Specific measurements of PCB 153 and PCB 180 among those subjects with completed sampling of blood samples from mothers and cord samples were significantly correlated. The concentrations of PCBs and pesticides did not differ in relation to prior spontaneous abortion history. There were no organochlorines present in the amniotic fluid at the current level of quantification. CONCLUSION: Pregnant women from the Western Canada region of Calgary, Alberta are exposed to relatively low concentrations of organochlorines. Measurement of maternal blood during the second trimester of pregnancy can reliably estimate the fetal exposure to PCBs. This estimate is reliable for Group 2 and 3 PCBs as well as PCB 153 and PCB 180. The amniotic fluid does not contain measurable concentrations of pesticides and PCBs under the conditions of the levels of quantification

    Chronic ventricular pacing in children: toward prevention of pacing-induced heart disease

    Get PDF
    In children with congenital or acquired complete atrioventricular (AV) block, ventricular pacing is indicated to increase heart rate. Ventricular pacing is highly beneficial in these patients, but an important side effect is that it induces abnormal electrical activation patterns. Traditionally, ventricular pacemaker leads are positioned at the right ventricle (RV). The dyssynchronous pattern of ventricular activation due to RV pacing is associated with an acute and chronic impairment of left ventricular (LV) function, structural remodeling of the LV, and increased risk of heart failure. Since the degree of pacing-induced dyssynchrony varies between the different pacing sites, ‘optimal-site pacing’ should aim at the prevention of mechanical dyssynchrony. Especially in children, generally paced from a very early age and having a perspective of life-long pacing, the preservation of cardiac function during chronic ventricular pacing should take high priority. In the perspective of the (patho)physiology of ventricular pacing and the importance of the sequence of activation, this paper provides an overview of the current knowledge regarding possible alternative sites for chronic ventricular pacing. Furthermore, clinical implications and practical concerns of the various pacing sites are discussed. The review concludes with recommendations for optimal-site pacing in children

    What is new in pediatric cardiac imaging?

    Get PDF
    Cardiac imaging has had significant influence on the science and practice of pediatric cardiology. Especially the development and improvements made in noninasive imaging techniques, like echocardiography and cardiac magnetic resonance imaging (MRI), have been extremely important. Technical advancements in the field of medical imaging are quickly being made. This review will focus on some of the important evolutions in pediatric cardiac imaging. Techniques such as intracardiac echocardiography, 3D echocardiography, and tissue Doppler imaging are relatively new echocardiographic techniques, which further optimize the anatomical and functional aspects of congenital heart disease. Also, the current standing of cardiac MRI and cardiac computerized tomography will be discussed. Finally, the recent European efforts to organize training and accreditation in pediatric echocardiography are highlighted
    corecore