15 research outputs found

    DEVELOPMENT OF INACTIVATED POLIO VACCINE FROM ATTENUATED SABIN STRAINS FOR CLINICAL STUDIES AND TECHNOLOGY-TRANSFER PURPOSES

    Get PDF
    Recently, responding to WHO’s call for new polio vaccines, the development of Sabin-IPV (injectable, formalin-Inactivated Polio Vaccine, based on attenuated ‘Sabin’ polio virus strains) was initated at NVI. This activity plays an important role in the WHO polio eradication strategy. The use of Sabin instead of wild-type Salk polio strains will provide additional safety during vaccine production. Initially, the Sabin-IPV production process will be based on the scale-down model of the current, and well-established, Salk-IPV process. In parallel, process development, optimization and formulation research is being carried out to further modernize the process and reduce cost per dose. The lab-scale accelerated process development, product characterization, clinical lot production, and preparations for technology transfer will be discussed. Multivariate data analysis (MVDA) was applied on data from current IPV production (more than 60 Vero cell culture based runs) to extract relevant information, like operating ranges. Subsequently, based on the MVDA analysis, a 3-L scale-down model of the current twin 750-L bioreactors has been setup. Currently, in this lab-scale process, cell and virus culture approximate the large-scale and process improvement studies are in progress. This includes the application of increased cell densities, animal component free media, and DOE optimization in multiple parallel bioreactors. Also, results will be shown from large-scale (to prepare for future technology transfer) generation and testing of Master- and Working virus seedlots, and clinical lot (for phase I studies) production under cGMP conditions. The obtained product was used for immunogenicity studies in rats. It was shown that Sabin-IPV induces a good immune response, and a comparison will be made to regular Salk-IPV. Finally, technology transfer to vaccine manufacturers in low and middle–income countries will take place. For that, an international Sabin-IPV manufacturing course, including practical training at pilot-scale, is being setup

    Immunization with Small Amyloid-β-derived Cyclopeptide Conjugates Diminishes Amyloid-β-Induced Neurodegeneration in Mice

    Get PDF
    Background: Soluble oligomeric (misfolded) species of amyloid-beta (A beta) are the main mediators of toxicity in Alzheimer's disease (AD). These oligomers subsequently form aggregates of insoluble fibrils that precipitate as extracellular and perivascular plaques in the brain. Active immunization against A beta is a promising disease modifying strategy. However, eliciting an immune response against A beta in general may interfere with its biological function and was shown to cause unwanted side-effects. Therefore, we have developed a novel experimental vaccine based on conformational neo-epitopes that are exposed in the misfolded oligomeric A beta, inducing a specific antibody response. Objective: Here we investigate the protective effects of the experimental vaccine against oligomeric A beta(1-42)-induced neuronal fiber loss in vivo. Methods: C57BL/6 mice were immunized or mock-immunized. Antibody responses were measured by enzyme-linked immunosorbent assay. Next, mice received a stereotactic injection of oligomeric A beta(1-42) into the nucleus basalis of Meynert (NBM) on one side of the brain (lesion side), and scrambled A beta(1-42) peptide in the contralateral NBM (control side). The densities of choline acetyltransferase-stained cholinergic fibers origination from the NBM were measured in the parietal neocortex postmortem. The percentage of fiber loss in the lesion side was determined relative to the control side of the brain. Results: Immunized responders (79%) showed 23% less cholinergic fiber loss (p = 0.01) relative to mock-immunized mice. Moreover, fiber loss in immunized responders correlated negatively with the measured antibody responses (R-2 = 0.29, p = 0.02). Conclusion: These results may provide a lead towards a (prophylactic) vaccine to prevent or at least attenuate (early onset) AD symptoms

    A Cyclic Undecamer Peptide Mimics a Turn in Folded Alzheimer Amyloid β and Elicits Antibodies against Oligomeric and Fibrillar Amyloid and Plaques

    Get PDF
    The 39- to 42-residue amyloid β (Aβ) peptide is deposited in extracellular fibrillar plaques in the brain of patients suffering from Alzheimer's Disease (AD). Vaccination with these peptides seems to be a promising approach to reduce the plaque load but results in a dominant antibody response directed against the N-terminus. Antibodies against the N-terminus will capture Aβ immediately after normal physiological processing of the amyloid precursor protein and therefore will also reduce the levels of non-misfolded Aβ, which might have a physiologically relevant function. Therefore, we have targeted an immune response on a conformational neo-epitope in misfolded amyloid that is formed in advance of Aβ-aggregation. A tetanus toxoid-conjugate of the 11-meric cyclic peptide Aβ(22–28)-YNGK′ elicited specific antibodies in Balb/c mice. These antibodies bound strongly to the homologous cyclic peptide-bovine serum albumin conjugate, but not to the homologous linear peptide-conjugate, as detected in vitro by enzyme-linked immunosorbent assay. The antibodies also bound—although more weakly—to Aβ(1–42) oligomers as well as fibrils in this assay. Finally, the antibodies recognized Aβ deposits in AD mouse and human brain tissue as established by immunohistological staining. We propose that the cyclic peptide conjugate might provide a lead towards a vaccine that could be administered before the onset of AD symptoms. Further investigation of this hypothesis requires immunization of transgenic AD model mice

    Antigen sparing with adjuvanted inactivated polio vaccine based on Sabin strains.

    Get PDF
    Six different adjuvants, each in combination with inactivated polio vaccine (IPV) produced with attenuated Sabin strains (sIPV), were evaluated for their ability to enhance virus neutralizing antibody titres (VNTs) in the rat potency model. The increase of VNTs was on average 3-, 15-, 24-fold with adjuvants after one immunization (serotypes 1, 2, and 3, respectively). Also after a boost immunization the VNTs of adjuvanted sIPV were on average another 7-20-27 times higher than after two inoculations of sIPV without adjuvant. The results indicate that it is feasible to increase the potency of inactivated polio vaccines by using adjuvants

    The First-in-Human Synthetic Glycan-Based Conjugate Vaccine Candidate against Shigella

    No full text
    International audienceShigella, the causative agent of shigellosis, is among the main causes of diarrheal diseases with still a high morbidity in low-income countries. Relying on chemical synthesis, we implemented a multidisciplinary strategy to design SF2a-TT15, an original glycoconjugate vaccine candidate targeting Shigella flexneri 2a (SF2a). Whereas the SF2a O-antigen features nonstoichiometric O-acetylation, SF2a-TT15 is made of a synthetic 15mer oligosaccharide, corresponding to three non-O-acetylated repeats, linked at its reducing end to tetanus toxoid by means of a thiol-maleimide spacer. We report on the scale-up feasibility under GMP conditions of a high yielding bioconjugation process established to ensure a reproducible and controllable glycan/protein ratio. Preclinical and clinical batches complying with specifications from ICH guidelines, WHO recommendations for polysaccharide conjugate vaccines, and (non)compendial tests were produced. The obtained SF2a-TT15 vaccine candidate passed all toxicity-related criteria, was immunogenic in rabbits, and elicited bactericidal antibodies in mice. Remarkably, the induced IgG antibodies recognized a large panel of SF2a circulating strains. These preclinical data have paved the way forward to the first-in-human study for SF2a-TT15, demonstrating safety and immunogenicity. This contribution discloses the yet unreported feasibility of the GMP synthesis of conjugate vaccines featuring a unique homogeneous synthetic glycan hapten fine-tuned to protect against an infectious disease

    Safety and immunogenicity of a synthetic carbohydrate conjugate vaccine against Shigella flexneri 2a in healthy adult volunteers: a phase 1, dose-escalating, single-blind, randomised, placebo-controlled study

    No full text
    International audienceBackground Shigella remains in the top four pathogens responsible for moderate to severe diarrhoea in children below 5 years of age. The shigella O-specific polysaccharide (O-SP) is a promising vaccine target. We developed a conjugate vaccine prototype incorporating a unique well defined synthetic oligosaccharide hapten, chemically designed for optimal antigenic, conformational, structural, and functional mimicry of the O-SP from Shigella flexneri 2a (SF2a). We aimed to assess the safety, tolerability, and immunogenicity of this original synthetic oligosaccharide-based vaccine candidate, SF2a-TT15, conceived to drive the antibody response towards the key protective determinants of the native lipopolysaccharide antigen, in a first-inhuman phase 1 study. Methods We did a first-inhuman , dose-escalating, single-blind, observer-masked, randomised, placebo-controlled study at the Clinical Research Center of Tel Aviv Sourasky Medical Center (Israel). Participants were healthy adults aged 18-45 years with low titres of serum SF2a-specific IgG antibodies. 64 eligible participants were assigned to one of two cohorts. 32 participants in each of the two cohorts were randomly assigned via computer-generated algorithm in a stepwise manner to receive the 2 μg (cohort 1) and 10 μg oligosaccharide dose (cohort 2) of the SF2a-TT15 vaccine candidate non-adjuvanted or adjuvanted with aluminium hydroxide (alum) or matching placebos. The vaccine was administered as three single intramuscular injections into the arm, 28 days apart. The primary outcome was the incidence and severity of adverse events, which were assessed in the intention-to-treat safety population analysis including all participants who were randomly assigned and received at least one vaccine or placebo injection. The immunogenicity endpoints were secondary outcomes and were analysed in all participants who were randomly assigned, received all of the assigned injections before the time of the immunogenicity assessment, and provided blood samples for immunological follow-up (per-protocol immunogenicity analysis). The study is registered with ClinicalStudies.gov, NCT02797236 and is completed

    A Synthetic Carbohydrate Conjugate Vaccine Candidate against Shigellosis: Improved Bioconjugation and Impact of Alum on Immunogenicity.

    No full text
    International audienceConjugation chemistry is among the most important parameters governing the efficacy of glycoconjugate vaccines. High robustness is required to ensure high yields and batch to batch reproducibility. Herein, we have established a robust bioconjugation protocol based on the thiol-maleimide addition. Major variables were determined and acceptable margins were investigated for a synthetic pentadecasaccharide-tetanus toxoid conjugate, which is a promising vaccine candidate against Shigella flexneri serotype 2a infection. The optimized process is applicable to any thiol-equipped hapten and provides an efficient control of the hapten:carrier ratio. Moreover, comparison of four S. flexneri 2a glycoconjugates only differing by their pentadecasaccharide:tetanus toxoid ratio confirmed preliminary findings indicating that hapten loading is critical for immunogenicity with an optimal ratio here in the range of 17 ± 5. In addition, the powerful influence of alum on the immunogenicity of a Shigella synthetic carbohydrate-based conjugate vaccine candidate is demonstrated for the first time, with a strong anti-S. flexneri 2a antibody response sustained for more than one year
    corecore