271 research outputs found

    Automatic Computation of Electrodes Trajectory for Deep Brain Stimulation

    Get PDF
    International audienceIn this paper, we propose an approach to find the optimal position of an electrode, for assisting surgeons in planning Deep Brain Stimulation. We first show how we formalized the rules governing this surgical procedure into geometric constraints. Then we explain our method, using a formal geometric solver, and a template built from 15 MRIs, used to propose a space of possible solutions and the optimal one. We show our results for the retrospective study on 8 implantations from 4 patients, and compare them with the trajectory of the electrode that was actually implanted. The results show a slight difference with the reference trajectories, with a better evaluation for our proposition

    De la neurochirurgie guidée par l'image,<br />au processus neurochirurgical assisté par la connaissance et l'information

    No full text
    La totalité des services français de neurochirurgie est aujourd'hui équipée de systèmes de neuronavigation. Ces systèmes de chirurgie guidée par l'image permettent le lien direct entre le patient, en salle d'opération, et ses images pré opératoires ; c'est-à-dire que le neurochirurgien, en salle d'opération et à tout instant, connaît, à partir d'un point désigné sur le patient par un outil, le point correspondant dans ses images d'IRM ou de Scanner X. Ceci est possible grâce à des localisateurs tridimensionnels et des logiciels de recalage d'images. Les bénéfices de tels systèmes pour le patient ont déjà été montrés. Ils rendent notamment la chirurgie plus sûre et moins invasive.Il est important de considérer le concept de chirurgie guidée par l'image comme un processus qui ne se réduit pas à la seule étape de réalisation du geste chirurgical. Depuis près d'une dizaine d'années, il existe un consensus sur l'importance de l'étape de préparation pour anticiper la réalisation du geste. Ce processus peut aussi inclure des étapes de choix de la stratégie chirurgicale, de simulation ou de répétition du geste et de suivi post opératoire du patient. Chaque étape de ce processus se fonde sur des observations liées au patient, comme ses images pré opératoires, sur des connaissances génériques explicites, comme des livres ou des atlas numériques d'anatomie, et sur des connaissances implicites résultant de l'expérience du chirurgien. Malgré cela, dans les systèmes actuels de chirurgie guidée par l'image, la seule information explicite utilisée est, le plus souvent, réduite à une simple imagerie anatomique. Alors que si l'on introduisait dans ces systèmes les images multimodales du patient, on prendrait mieux en compte la complexité anatomique, physiologique et métabolique des structures cérébrales. Sans compter que dans ces systèmes, la préparation de la procédure chirurgicale se réduit principalement à la définition de la cible et d'une trajectoire d'accès rectiligne. Si l'on considérait la procédure comme une succession d'étapes et d'actions, on permettrait au neurochirurgien de mieux préparer et, donc, de mieux réaliser son geste. Son savoir-faire implicite pourrait être explicité. Enfin, ces systèmes ne tiennent pas compte des déformations anatomiques intra opératoires dues, notamment, au geste chirurgical. Ainsi, les images pré opératoires du patient deviennent rapidement obsolètes et ne correspondent plus à la réalité anatomique du patient.Il existe donc un fossé entre la chirurgie telle qu'elle est vue par ces systèmes et la réalité chirurgicale. C'est ce fossé que je cherche à combler.Mes travaux de recherche se situent dans le domaine du génie biologique et médical. Ils incluent des aspects liés au traitement d'images et à l'informatique médicale. Le domaine d'application est la neurochirurgie. Les méthodes mises en oeuvre dans les travaux que je présenterai s'appuient sur un concept de coopération entre observations et connaissances. Ainsi, sur l'aspect observations, je présenterai l'introduction d'images multimodales du patient, dans le processus chirurgical, qu'elles soient pré ou intra opératoires. Sur l'aspect connaissances, je présenterai une démarche qui permet de formaliser certaines connaissances relatives à la neurochirurgie.La méthodologie de recherche que j'ai utilisée suit une approche itérative, où l'application clinique est centrale. A partir des connaissances médicales, les spécifications d'un nouveau projet sont définies. Ces spécifications entraînent le développement de nouvelles méthodes et leur implémentation par le biais d'un prototype d'application. Ce prototype permet, grâce àune utilisation pré clinique, d'évaluer ces méthodes. Cette implémentation et cette phase d'utilisation autorisent aussi un retour vers la méthode, pour vérifier la pertinence des choix réalisés et pour contribuer à son amélioration. Enfin, cette boucle permet une validation des connaissances initiales et un possible enrichissement de celles-ci. Les objectifs de mes recherches sont donc, à la fois, l'élaboration de nouveaux systèmes d'intérêt thérapeutique et la génération de nouvelles connaissances chirurgicales.Ce document aborde trois domaines principaux : la neurochirurgie guidée par l'image, la neurochirurgie guidée par l'information et la validation des outils de traitement d'images médicales en chirurgie guidée par l'image. Pour chacun de ces domaines, je présenterai le contexte et l'état de l'art, les contributions personnelles apportées au domaine et ses perspectives d'évolution.Dans le premier chapitre, je présenterai comment l'imagerie médicale peut assister la chirurgie. Pour cela, j'introduirai les méthodes de traitement d'images, plus particulièrement le recalage et la fusion d'images médicales. Ces dernières sont incontournables en neurochirurgie guidée par l'image, le principe même de ce type de chirurgie étant cette mise en correspondance géométrique entre repère des images et repère du patient. Puis, je présenterai le principe du processus chirurgical assisté par l'image, en décrivant les différentes étapes mises en jeu dans un tel processus. Je présenterai mes contributions : 1) l'introduction du concept de neuronavigation multimodale et multi informationnelle, et 2) l'introduction du concept de virtualité augmentée, en complément aux approches de réalité augmentée.Dans le deuxième chapitre, je présenterai le concept récent de chirurgie guidée par l'information, qui s'appuie sur une formalisation du processus chirurgical et des connaissances associées. Nous verrons que ce processus peut être étudié selon différents angles, chaque angle d'étude correspondant à un objectif applicatif précis. Je présenterai une méthodologie complète permettant supervision et apprentissage par : 1) la prise en compte, dans le processus de chirurgie guidée par l'image multimodale, de certaines connaissances implicites du chirurgien, notamment liées à son expertise chirurgicale, en les rendant explicites, et 2) la génération de connaissances sur la chirurgie.Les deux premiers chapitres démontrent comment il peut être intéressant de faire coopérer images et connaissances. Dans le troisième chapitre, nous proposerons d'appliquer ce concept de coopération entre observations et connaissances au contexte des déformations anatomiques intra opératoires. Nous montrerons la complexité de ce phénomène, et de ses causes, et les limites des méthodes présentées dans la littérature. Nous décrirons succinctement comment ce concept pourra être appliqué dans le cadre d'un projet de recherche qui débute.Dans le quatrième chapitre, j'insisterai sur l'importance de la validation des outils de traitement d'images en chirurgie guidée par l'image. J'introduirai la terminologie et la méthodologie liées à la validation principalement technique des outils de traitement d'images, en soulignant le besoin de standardisation. Je présenterai mes contributions au domaine : la définition d'une méthodologie standardisée pour la validation des méthodes de recalage d'images médicales, basée sur la comparaison avec une référence.Je terminerai, dans le cinquième chapitre, par une ébauche de description des évolutions à court et à long terme de la chirurgie, s'inspirant des réflexions et résultats des chapitres précédents

    Intra-operative Registration for Deep Brain Stimulation Procedures based on a Full Physics Head Model

    Get PDF
    International audienceBrain deformation is a factor of inaccuracy during stereotactic neurosurgeries. If this phenomenon is not considered in the pre-operative planning or intra-operatively, it could lead to surgical complications, side effects or ineffectiveness. In this paper, we present a patient-specific method to update the pre-operative planning based on a physical simulation of the brain shift. A minimization process estimates parameters of the simulation in order to compute the brain tissue deformation matching the partial data taken from intra-operative modalities. The simulation is based on a patient-specific biomechanical model of the brain and the cerebro-spinal fluid. We validate the method on a patient with a post-operative MRI

    Unsupervised Trajectory Segmentation for Surgical Gesture Recognition in Robotic Training

    No full text
    International audienceDexterity and procedural knowledge are two critical skills that surgeons need to master to perform accurate and safe surgical interventions. However, current training systems do not allow us to provide an in-depth analysis of surgical gestures to precisely assess these skills. Our objective is to develop a method for the automatic and quantitative assessment of surgical gestures. To reach this goal, we propose a new unsupervised algorithm that can automatically segment kinematic data from robotic training sessions. Without relying on any prior information or model, this algorithm detects critical points in the kinematic data that define relevant spatio-temporal segments. Based on the association of these segments, we obtain an accurate recognition of the gestures involved in the surgical training task. We, then, perform an advanced analysis and assess our algorithm using datasets recorded during real expert training sessions. After comparing our approach with the manual annotations of the surgical gestures, we observe 97.4% accuracy for the learning purpose and an average matching score of 81.9% for the fully automated gesture recognition process. Our results show that trainees workflow can be followed and surgical gestures may be automatically evaluated according to an expert database. This approach tends toward improving training efficiency by minimizing the learning curve

    Development of workflow task analysis during cerebral diagnostic angiographies: Time-based comparison of junior and senior tasks

    No full text
    International audienceOBJECTIVE: Assessing neuroradiologists' skills in the operating room (OR) is difficult and often subjective. This study used a workflow time-based task analysis approach while performing cerebral angiography. METHODS: Eight angiographies performed by a senior neuroradiologist and eight performed by a junior neuroradiologist were compared. Dedicated software with specific terminology was used to record the tasks. Procedures were subdivided into phases, each comprising multiple tasks. Each task was defined as a triplet, associating an action, an instrument and an anatomical structure. The duration of each task was the metric. Total duration of the procedure, task duration and the number of times a task was repeated were identified. The focus was on tasks using fluoroscopy and for moving the X-ray table/tube. RESULTS: The total duration of tasks to complete the entire procedure was longer for the junior operators than for the seniors (P=0.012). The mean duration per task during the navigation phase was 86s for the juniors and 43s for the seniors (P=0.002). The total and mean durations of tasks involving the use of fluoroscopy were also longer for the juniors (P=0.002 and P=0.033, respectively). For tasks involving the table/tube, the total and mean durations were again longer for the juniors (P=0.019 and P=0.082, respectively). CONCLUSION: This approach allows reliable skill assessment in the radiology OR and comparison of junior and senior competencies during cerebral diagnostic angiography. This new tool can improve the quality and safety of procedures, and facilitate the learning process for neuroradiologists

    Intensity-Based Registration of Freehand 3D Ultrasound and CT-scan Images of the Kidney

    Full text link
    This paper presents a method to register a pre-operative Computed-Tomography (CT) volume to a sparse set of intra-operative Ultra-Sound (US) slices. In the context of percutaneous renal puncture, the aim is to transfer planning information to an intra-operative coordinate system. The spatial position of the US slices is measured by optically localizing a calibrated probe. Assuming the reproducibility of kidney motion during breathing, and no deformation of the organ, the method consists in optimizing a rigid 6 Degree Of Freedom (DOF) transform by evaluating at each step the similarity between the set of US images and the CT volume. The correlation between CT and US images being naturally rather poor, the images have been preprocessed in order to increase their similarity. Among the similarity measures formerly studied in the context of medical image registration, Correlation Ratio (CR) turned out to be one of the most accurate and appropriate, particularly with the chosen non-derivative minimization scheme, namely Powell-Brent's. The resulting matching transforms are compared to a standard rigid surface registration involving segmentation, regarding both accuracy and repeatability. The obtained results are presented and discussed
    corecore