118 research outputs found

    Resistance to different classes of drugs is associated with impaired apoptosis in childhood acute lymphoblastic leukemia

    Get PDF
    Resistance of leukemic cells to chemotherapeutic agents is associated with an unfavorable outcome in pediatric acute lymphoblastic leukemia (ALL). To investigate the underlying mechanisms of cellular drug resistance, the activation of various apoptotic parameters in leukemic cells from 50 children with ALL was studied after in vitro exposure with 4 important drugs in ALL therapy (prednisolone, vincristine, l-asparaginase, and daunorubicin). Exposure to each drug resulted in early induction of phosphatidylserine (PS) externalization and mitochondrial transmembrane (Deltapsim) depolarization followed by caspase-3 activation and poly(ADP-ribose) polymerase (PARP) inactivation in the majority of patients. For all 4 drugs, a significant inverse correlation was found between cellular drug resistance and (1) the percentage of cells with PS externalization (<.001 < P <.008) and (2) the percentage of cells with Deltapsim depolarization (.002 < P <.02). However, the percentage of cells with caspase-3 activation and the percentage of cells with PARP inactivation showed a significant inverse correlation with cellular resistance for prednisolone (P =.001; P =.001) and l-asparaginase (P =.01; P =.001) only. This suggests that caspase-3 activation and PARP inactivation are not essential for vincristine- and daunorubicin-induced apoptosis. In conclusion, resistance to 4 unrelated drugs is associated with defect(s) upstream or at the level of PS externalization and Deltapsim depolarization. This leads to decreased activation of apoptotic parameters in resistant cases of pediatric AL

    Decreased PARP and procaspase-2 protein levels are associated with cellular drug resistance in childhood acute lymphoblastic leukemia

    Get PDF
    Drug resistance in childhood acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML) is associated with impaired ability to induce apoptosis. To elucidate causes of apoptotic defects, we studied the protein expression of Apaf-1, procaspases-2, -3, -6, -7, -8, -10, and poly(adenosine diphosphate [ADP]-ribose) polymerase (PARP) in cells from children with acute lymphoblastic leukemia (ALL; n = 43) and acute myeloid leukemia (AML; n = 10). PARP expression was present in all B-lineage samples, but absent in 4 of 15 T-lineage ALL samples and 3 of 10 AML cases, which was not caused by genomic deletions. PARP expression was a median 7-fold lower in T-lineage ALL (P < .001) and 10-fold lower in AML (P < .001) compared with B-lineage ALL. PARP expression was 4-fold lower in prednisolone, vincristine and L-asparaginase (PVA)-resistant compared with PVA-sensitive ALL patients (P < .001). Procaspase-2 expression was 3-fold lower in T-lineage ALL (P = .022) and AML (P = .014) compared with B-lineage ALL. In addition, procaspase-2 expression was 2-fold lower in PVA-resistant compared to PVA-sensitive ALL patients (P = .042). No relation between apoptotic protease-activating factor 1 (Apaf-1), procaspases-3, -6, -7, -8, -10, and drug resistance was found. In conclusion, low baseline expression of PARP and procaspase-2 is related to cellular drug resistance in childhood acute lymphoblastic leukemia

    Treosulfan-based conditioning regimen for children and adolescents with hemophagocytic lymphohistiocytosis

    Get PDF
    In hematopoietic stem cell transplantation for hemophagocytic lymphohistiocytosis, high transplant-related mortality after busulfan-based myeloablative regimens has been observed. Conditioning regimens with reduced toxicity based on melphalan or treosulfan are promising alternatives. We retrospectively analyzed hematopoietic stem cell transplantations in 19 hemophagocytic lymphohistiocytosis patients after conditioning with fludarabine, treosulfan, alemtuzumab, with or without thiotepa. Overall and disease-free survivals were 100% (follow up 7-31 months). Two patients required second transplant (1 after haploidentical transplantation). In 6 patients, overall donor chimerism dropped below 75% and prompted donor lymphocyte infusions. Administration of donor lymphocytes or second transplantation were significantly more frequent after transplantation from a human leukocyte antigen mismatched (9/10) versus matched (10/10) donor (P=0.018). The toxicity profile was favorable, with one veno-occlusive disease, one grade 3 graft-versus-host disease after donor lymphocyte infusion, and 2 severe viral infections (1 influenza, 1 Epstein Barr virus). In conclusion, the treosulfan-based regimen in hemophagocytic lymphohistiocytosis is effective with low toxicity and gives excellent overall and disease-free survival rates. In the future, the incidence of mixed chimerism, particularly after human leukocyte antigen mismatched donor transplants, needs to be addressed

    Treosulfan-based conditioning regimen for children and adolescents with hemophagocytic lymphohistiocytosis

    Get PDF
    In hematopoietic stem cell transplantation for hemophagocytic lymphohistiocytosis, high transplant-related mortality after busulfan-based myeloablative regimens has been observed. Conditioning regimens with reduced toxicity based on melphalan or treosulfan are promising alternatives. We retrospectively analyzed hematopoietic stem cell transplantations in 19 hemophagocytic lymphohistiocytosis patients after conditioning with fludarabine, treosulfan, alemtuzumab, with or without thiotepa. Overall and disease-free survivals were 100% (follow up 7-31 months). Two patients required second transplant (1 after haploidentical transplantation). In 6 patients, overall donor chimerism dropped below 75% and prompted donor lymphocyte infusions. Administration of donor lymphocytes or second transplantation were significantly more frequent after transplantation from a human leukocyte antigen mismatched (9/10) versus matched (10/10) donor (P=0.018). The toxicity profile was favorable, with one veno-occlusive disease, one grade 3 graft-versus-host disease after donor lymphocyte infusion, and 2 severe viral infections (1 influenza, 1 Epstein Barr virus). In conclusion, the treosulfan-based regimen in hemophagocytic lymphohistiocytosis is effective with low toxicity and gives excellent overall and disease-free survival rates. In the future, the incidence of mixed chimerism, particularly after human leukocyte antigen mismatched donor transplants, needs to be addressed

    Hemophagocytic lymphohistiocytosis in critically ill patients: diagnostic reliability of HLH-2004 criteria and HScore

    Get PDF
    Background: Hemophagocytic lymphohistiocytosis (HLH) is a rare though often fatal hyperinflammatory syndrome mimicking sepsis in the critically ill. Diagnosis relies on the HLH-2004 criteria and HScore, both of which have been developed in pediatric or adult non-critically ill patients, respectively. Therefore, we aimed to determine the sensitivity and specificity of HLH-2004 criteria and HScore in a cohort of adult critically ill patients. Methods: In this further analysis of a retrospective observational study, patients ≥ 18 years admitted to at least one adult ICU at Charité - Universitätsmedizin Berlin between January 2006 and August 2018 with hyperferritinemia of ≥ 500 μg/L were included. Patients' charts were reviewed for clinically diagnosed or suspected HLH. Receiver operating characteristics (ROC) analysis was performed to determine prediction accuracy. Results: In total, 2623 patients with hyperferritinemia were included, of whom 40 patients had HLH. We found the best prediction accuracy of HLH diagnosis for a cutoff of 4 fulfilled HLH-2004 criteria (95.0% sensitivity and 93.6% specificity) and HScore cutoff of 168 (100% sensitivity and 94.1% specificity). By adjusting HLH-2004 criteria cutoffs of both hyperferritinemia to 3000 μg/L and fever to 38.2 °C, sensitivity and specificity increased to 97.5% and 96.1%, respectively. Both a higher number of fulfilled HLH-2004 criteria [OR 1.513 (95% CI 1.372-1.667); p < 0.001] and a higher HScore [OR 1.011 (95% CI 1.009-1.013); p < 0.001] were significantly associated with in-hospital mortality. Conclusions: An HScore cutoff of 168 revealed a sensitivity of 100% and a specificity of 94.1%, thereby providing slightly superior diagnostic accuracy compared to HLH-2004 criteria. Both HLH-2004 criteria and HScore proved to be of good diagnostic accuracy and consequently might be used for HLH diagnosis in critically ill patients. Clinical trial registration: The study was registered with www.ClinicalTrials.gov (NCT02854943) on August 1, 2016

    Asparagine synthetase expression is linked with L-asparaginase resistance in TEL-AML1-negative but not TEL-AML1-positive pediatric acute lymphoblastic leukemia

    Get PDF
    Resistance to L-asparaginase in leukemic cells may be caused by an elevated cellular expression of asparagine synthetase (AS). Previously, we reported that high AS expression did not correlate to L-asparaginase resistance in TEL-AML1-positive B-lineage acute lymphoblastic leukemia (ALL). In the present study we confirmed this finding in TEL-AML1-positive patients (n = 28) using microarrays. In contrast, 35 L-asparaginase-resistant TEL-AML1-negative B-lineage ALL patients had a significant 3.5-fold higher AS expression than 43 sensitive patients (P < .001). Using real-time quantitative polymerase chain reaction (RTQ-PCR), this finding was confirmed in an independent group of 39 TEL-AML1-negative B-lineage ALL patients (P = .03). High expression of AS was associated with poor prognosis (4-year probability of disease-free survival [pDFS] 58% +/- 11%) compared with low expression (4-year pDFS 83% +/- 7%; P = .009). We conclude that resistance to l-asparaginase and relapse risk are associated with high expression of AS in TEL-AML1-negative but not TEL-AML1-positive B-lineage ALL

    Stem cell transplantation for children with hemophagocytic lymphohistiocytosis: results from the HLH-2004 study

    Get PDF
    We report the largest prospective study thus far on hematopoietic stem cell transplantation (HSCT) in hemophagocytic lymphohistiocytosis (HLH), a life-threatening hyperinflammatory syndrome comprising familial/genetic HLH (FHL) and secondary HLH. Although all patients with HLH typically need intensive anti-inflammatory therapy, patients with FHL also need HSCT to be cured. In the international HLH-2004 study, 187 children aged ,18 years fulfilling the study inclusion criteria (5 of 8 diagnostic criteria, affected sibling, or molecular diagnosis in FHL-causative genes) underwent 209 transplants (2004-2012), defined as indicated in patients with familial/genetic, relapsing, or severe/persistent disease. Five-year overall survival (OS) post-HSCT was 66% (95% confidence interval [CI], 59-72); event-free survival (EFS) was 60% (95% CI, 52-67). Five-year OS was 81% (95% CI, 65-90) for children with a complete response and 59% (95% CI, 48-69) for those with a partial response (hazard ratio [HR], 2.12; 95% CI, 1.06-4.27; P 5 .035). For children with verified FHL (family history/genetically verified, n 5 134), 5-year OS was 71% (95% CI, 62-78) and EFS was 62% (95% CI, 54-70); 5-year OS for children without verified FHL (n 5 53) was significantly lower (52%; 95% CI, 38-65) (P 5 .040; HR, 1.69; 95% CI, 1.03-2.77); they were also significantly older. Notably, 20 (38%) of 53 patients without verified FHL had natural killer cell activity reported as normal at diagnosis, after 2 months, or at HSCT, suggestive of secondary HLH; and in addition 14 (26%) of these 53 children had no evidence of biallelic mutations despite having 3 or 4 FHL genes analyzed (natural killer cell activity not analyzed after 2 months or at HSCT). We conclude that post-HSCT survival in FHL remains suboptimal, and that the FHL diagnosis should be carefully investigated before HSCT. Pretransplant complete remission is beneficial but not mandatory to achieve post-HSCT survival.Fil: Bergsten, Elisabet. Karolinska Huddinge Hospital. Karolinska Institutet; SueciaFil: Horne, AnnaCarin. Karolinska Huddinge Hospital. Karolinska Institutet; SueciaFil: Hed Myrberg, Ida. Karolinska Huddinge Hospital. Karolinska Institutet; SueciaFil: Aricó, Maurizio. Children Hospital Giovanni XXIII; ItaliaFil: Astigarraga, Itziar. Universidad del País Vasco; EspañaFil: Ishii, Eiichi. Ehime University; JapónFil: Janka, Gritta. Universitat Hamburg; AlemaniaFil: Ladisch, Stephan. Children’s National Medical Center; Estados UnidosFil: Lehmberg, Kai. Universitat Hamburg; AlemaniaFil: McClain, Kenneth L.. Baylor College of Medicine; Estados UnidosFil: Minkov, Milen. Universidad de Viena; AustriaFil: Nanduri, Vasanta. Watford General Hospital; Reino UnidoFil: Rosso, Diego. Gobierno de la Ciudad de Buenos Aires. Hospital General de Niños Pedro Elizalde (ex Casa Cuna); Argentina. Universidad de Buenos Aires. Facultad de Medicina. Hospital de Clínicas General San Martín; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Sieni, Elena. Universitaria A. Meyer Children Hospital; ItaliaFil: Winiarski, Jacek. Karolinska Huddinge Hospital. Karolinska Institutet; SueciaFil: Henter, Jan Inge. Karolinska Huddinge Hospital. Karolinska Institutet; Sueci

    Effective Immunological Guidance of Genetic Analyses Including Exome Sequencing in Patients Evaluated for Hemophagocytic Lymphohistiocytosis

    Get PDF
    We report our experience in using flow cytometry-based immunological screening prospectively as a decision tool for the use of genetic studies in the diagnostic approach to patients with hemophagocytic lymphohistiocytosis (HLH). We restricted genetic analysis largely to patients with abnormal immunological screening, but included whole exome sequencing (WES) for those with normal findings upon Sanger sequencing. Among 290 children with suspected HLH analyzed between 2010 and 2014 (including 17 affected, but asymptomatic siblings), 87/162 patients with "full" HLH and 79/111 patients with "incomplete/atypical" HLH had normal immunological screening results. In 10 patients, degranulation could not be tested. Among the 166 patients with normal screening, genetic analysis was not performed in 107 (all with uneventful follow-up), while 154 single gene tests by Sanger sequencing in the remaining 59 patients only identified a single atypical CHS patient. Flow cytometry correctly predicted all 29 patients with FHL-2, XLP1 or 2. Among 85 patients with defective NK degranulation (including 13 asymptomatic siblings), 70 were Sanger sequenced resulting in a genetic diagnosis in 55 (79%). Eight patients underwent WES, revealing mutations in two known and one unknown cytotoxicity genes and one metabolic disease. FHL3 was the most frequent genetic diagnosis. Immunological screening provided an excellent decision tool for the need and depth of genetic analysis of HLH patients and provided functionally relevant information for rapid patient classification, contributing to a significant reduction in the time from diagnosis to transplantation in recent years

    Spectrum of Perforin Gene Mutations in Familial Hemophagocytic Lymphohistiocytosis

    Get PDF
    Familial hemophagocytic lymphohistiocytosis (FHL) is an autosomal recessive disease of early childhood characterized by nonmalignant accumulation and multivisceral infiltration of activated T lymphocytes and histiocytes (macrophages). Cytotoxic T and natural killer (NK) cell activity is markedly reduced or absent in these patients, and mutations in a lytic granule constituent, perforin, were recently identified in a number of FHL individuals. Here, we report a comprehensive survey of 34 additional patients with FHL for mutations in the coding region of the perforin gene and the relative frequency of perforin mutations in FHL. Perforin mutations were identified in 7 of the 34 families investigated. Six children were homozygous for the mutations, and one patient was a compound heterozygote. Four novel mutations were detected: one nonsense, two missense, and one deletion of one amino acid. In four families, a previously reported mutation at codon 374, causing a premature stop codon, was identified, and, therefore, this is the most common perforin mutation identified so far in FHL patients. We found perforin mutations in 20% of all FHL patients investigated (7/34), with a somewhat higher prevalence, ∼30% (6/20), in children whose parents originated from Turkey. No other correlation between the type of mutation and the phenotype of the patients was evident from the present study. Our combined results from mutational analysis of 34 families and linkage analysis of a subset of consanguineous families indicate that perforin mutations account for 20%–40% of the FHL cases and the FHL 1 locus on chromosome 9 for ∼10%, whereas the major part of the FHL cases are caused by mutations in not-yet-identified genes
    corecore