817 research outputs found

    Resampling technique applied to statistics of microsegregation characterization

    Get PDF
    Characterization of chemical heterogeneities at the dendrite scale is of practical importance for understanding phase transformation either during solidification or during subsequent solid-state treatment. Spot analysis with electron probe is definitely well-suited to investigate such heterogeneities at the micron scale that is relevant for most solidified products. However, very few has been done about the statistics of experimental solute distributions gained from such analyses when they are now more and more used for validating simulation data. There are two main sources generating discrepancies between estimated and actual solute distributions in an alloy: i) data sampling with a limited number of measurements to keep analysis within a reasonable time length; and ii) uncertainty linked to the measurement process, namely the physical noise that accompanies X-ray emission. Focusing on the first of these sources, a few 2-D composition images have been generated by phase field modelling of a Mg-Al alloy. These images were then used to obtain "true" solute distributions to which to compare coarse grid analyses as generally performed with a microanalyser. Resampling, i.e. generating several distributions by grid analyses with limited number of picked-up values, was then used to get statistics of estimates of solute distribution. The discussion of the present results deals first with estimating the average solute content and then focuses on the distribution in the primary phase

    Optimising the management of vaginal discharge syndrome in Bulgaria: cost effectiveness of four clinical algorithms with risk assessment

    Get PDF
    OBJECTIVES: To evaluate the performance and cost effectiveness of the WHO recommendations of incorporating risk-assessment scores and population prevalence of Neisseria gonorrhoeae (NG) and Chlamydia trachomatis (CT) into vaginal discharge syndrome (VDS) algorithms. METHODS: Non-pregnant women presenting with VDS were recruited at a non-governmental sexual health clinic in Sofia, Bulgaria. NG and CT were diagnosed by PCR and vaginal infections by microscopy. Risk factors for NG/CT were identified in multivariable analysis. Four algorithms based on different combinations of behavioural factors, clinical findings and vaginal microscopy were developed. Performance of each algorithm was evaluated for detecting vaginal and cervical infections separately. Cost effectiveness was based on cost per patient treated and cost per case correctly treated. Sensitivity analysis explored the influence of NG/CT prevalence on cost effectiveness. RESULTS: 60% (252/420) of women had genital infections, with 9.5% (40/423) having NG/CT. Factors associated with NG/CT included new and multiple sexual partners in the past 3 months, symptomatic partner, childlessness and >or=10 polymorphonuclear cells per field on vaginal microscopy. For NG/CT detection, the algorithm that relied solely on behavioural risk factors was less sensitive but more specific than those that included speculum examination or microscopy but had higher correct-treatment rate and lower over-treatment rates. The cost per true case treated using a combination of risk factors, speculum examination and microscopy was euro 24.08. A halving and tripling of NG/CT prevalence would have approximately the inverse impact on the cost-effectiveness estimates. CONCLUSIONS: Management of NG/CT in Bulgaria was improved by the use of a syndromic approach that included risk scores. Approaches that did not rely on microscopy lost sensitivity but were more cost effective

    Steric constraints in model proteins

    Full text link
    A simple lattice model for proteins that allows for distinct sizes of the amino acids is presented. The model is found to lead to a significant number of conformations that are the unique ground state of one or more sequences or encodable. Furthermore, several of the encodable structures are highly designable and are the non-degenerate ground state of several sequences. Even though the native state conformations are typically compact, not all compact conformations are encodable. The incorporation of the hydrophobic and polar nature of amino acids further enhances the attractive features of the model.Comment: RevTex, 5 pages, 3 postscript figure

    Stochastic kinetics of viral capsid assembly based on detailed protein structures

    Get PDF
    We present a generic computational framework for the simulation of viral capsid assembly which is quantitative and specific. Starting from PDB files containing atomic coordinates, the algorithm builds a coarse grained description of protein oligomers based on graph rigidity. These reduced protein descriptions are used in an extended Gillespie algorithm to investigate the stochastic kinetics of the assembly process. The association rates are obtained from a diffusive Smoluchowski equation for rapid coagulation, modified to account for water shielding and protein structure. The dissociation rates are derived by interpreting the splitting of oligomers as a process of graph partitioning akin to the escape from a multidimensional well. This modular framework is quantitative yet computationally tractable, with a small number of physically motivated parameters. The methodology is illustrated using two different viruses which are shown to follow quantitatively different assembly pathways. We also show how in this model the quasi-stationary kinetics of assembly can be described as a Markovian cascading process in which only a few intermediates and a small proportion of pathways are present. The observed pathways and intermediates can be related a posteriori to structural and energetic properties of the capsid oligomers

    Divergence between the high rate of p53 mutations in skin carcinomas and the low prevalence of anti-p53 antibodies

    Get PDF
    Circulating anti-p53 antibodies have been described and used as tumoural markers in patients with various cancers and strongly correlate with the p53 mutated status of the tumours. No study has yet looked at the prevalence of such antibodies in skin carcinoma patients although these tumours have been shown to be frequently p53 mutated. Most skin carcinoma can be diagnosed by examination or biopsy, but aggressive, recurrent and/or non-surgical cases' follow up would be helped by a biological marker of residual disease. We performed a prospective study looking at the prevalence of anti-p53 antibodies using an ELISA technique in a series of 105 skin carcinoma patients in comparison with a sex- and age-matched control skin carcinoma-free group (n = 130). Additionally, p53 accumulation was studied by immunohistochemistry to confirm p53 protein altered expression in a sample of tumours. Anti-p53 antibodies were detected in 2.9% of the cases, with a higher prevalence in patients suffering from the more aggressive squamous cell type (SCC) of skin carcinoma (8%) than for the more common and slowly growing basal cell carcinoma type or BCC (1.5%). p53 protein stabilization could be confirmed in 80% of tumours studied by IHC. This low level of anti-p53 antibody detection contrasts with the high rate of p53 mutations reported in these tumours. This observation shows that the anti-p53 humoral response is a complex and tissue-specific mechanism. © 2001 Cancer Research Campaign http://www.bjcancer.co

    Role of the Subunits Interactions in the Conformational Transitions in Adult Human Hemoglobin: an Explicit Solvent Molecular Dynamics Study

    Full text link
    Hemoglobin exhibits allosteric structural changes upon ligand binding due to the dynamic interactions between the ligand binding sites, the amino acids residues and some other solutes present under physiological conditions. In the present study, the dynamical and quaternary structural changes occurring in two unligated (deoxy-) T structures, and two fully ligated (oxy-) R, R2 structures of adult human hemoglobin were investigated with molecular dynamics. It is shown that, in the sub-microsecond time scale, there is no marked difference in the global dynamics of the amino acids residues in both the oxy- and the deoxy- forms of the individual structures. In addition, the R, R2 are relatively stable and do not present quaternary conformational changes within the time scale of our simulations while the T structure is dynamically more flexible and exhibited the T\rightarrow R quaternary conformational transition, which is propagated by the relative rotation of the residues at the {\alpha}1{\beta}2 and {\alpha}2{\beta}1 interface.Comment: Reprinted (adapted) with permission from J. Phys. Chem. B DOI:10.1021/jp3022908. Copyright (2012) American Chemical Societ

    Composite structural motifs of binding sites for delineating biological functions of proteins

    Get PDF
    Most biological processes are described as a series of interactions between proteins and other molecules, and interactions are in turn described in terms of atomic structures. To annotate protein functions as sets of interaction states at atomic resolution, and thereby to better understand the relation between protein interactions and biological functions, we conducted exhaustive all-against-all atomic structure comparisons of all known binding sites for ligands including small molecules, proteins and nucleic acids, and identified recurring elementary motifs. By integrating the elementary motifs associated with each subunit, we defined composite motifs which represent context-dependent combinations of elementary motifs. It is demonstrated that function similarity can be better inferred from composite motif similarity compared to the similarity of protein sequences or of individual binding sites. By integrating the composite motifs associated with each protein function, we define meta-composite motifs each of which is regarded as a time-independent diagrammatic representation of a biological process. It is shown that meta-composite motifs provide richer annotations of biological processes than sequence clusters. The present results serve as a basis for bridging atomic structures to higher-order biological phenomena by classification and integration of binding site structures.Comment: 34 pages, 7 figure

    Roles of residues in the interface of transient protein-protein complexes before complexation

    Get PDF
    Transient protein-protein interactions play crucial roles in all facets of cellular physiology. Here, using an analysis on known 3-D structures of transient protein-protein complexes, their corresponding uncomplexed forms and energy calculations we seek to understand the roles of protein-protein interfacial residues in the unbound forms. We show that there are conformationally near invariant and evolutionarily conserved interfacial residues which are rigid and they account for ∼65% of the core interface. Interestingly, some of these residues contribute significantly to the stabilization of the interface structure in the uncomplexed form. Such residues have strong energetic basis to perform dual roles of stabilizing the structure of the uncomplexed form as well as the complex once formed while they maintain their rigid nature throughout. This feature is evolutionarily well conserved at both the structural and sequence levels. We believe this analysis has general bearing in the prediction of interfaces and understanding molecular recognition

    A Database of Domain Definitions for Proteins with Complex Interdomain Geometry

    Get PDF
    Protein structural domains are necessary for understanding evolution and protein folding, and may vary widely from functional and sequence based domains. Although, various structural domain databases exist, defining domains for some proteins is non-trivial, and definitions of their domain boundaries are not available. Here, we present a novel database of manually defined structural domains for a representative set of proteins from the SCOP “multi-domain proteins” class. (http://prodata.swmed.edu/multidom/). We consider our domains as mobile evolutionary units, which may rearrange during protein evolution. Additionally, they may be visualized as structurally compact and possibly independently folding units. We also found that representing domains as evolutionary and folding units do not always lead to a unique domain definition. However, unlike existing databases, we retain and refine these “alternate” domain definitions after careful inspection of structural similarity, functional sites and automated domain definition methods. We provide domain definitions, including actual residue boundaries, for proteins that well known databases like SCOP and CATH do not attempt to split. Our alternate domain definitions are suitable for sequence and structure searches by automated methods. Additionally, the database can be used for training and testing domain delineation algorithms. Since our domains represent structurally compact evolutionary units, the database may be useful for studying domain properties and evolution
    corecore