9 research outputs found

    Down syndrome-recent progress and future prospects

    Get PDF
    Down syndrome (DS) is caused by trisomy of chromosome 21 (Hsa21) and is associated with a number of deleterious phenotypes, including learning disability, heart defects, early-onset Alzheimer's disease and childhood leukaemia. Individuals with DS are affected by these phenotypes to a variable extent; understanding the cause of this variation is a key challenge. Here, we review recent research progress in DS, both in patients and relevant animal models. In particular, we highlight exciting advances in therapy to improve cognitive function in people with DS and the significant developments in understanding the gene content of Hsa21. Moreover, we discuss future research directions in light of new technologies. In particular, the use of chromosome engineering to generate new trisomic mouse models and large-scale studies of genotype-phenotype relationships in patients are likely to significantly contribute to the future understanding of DS

    One billion years of tectonism at the Paleoproterozoic interface of North and South Australia

    Get PDF
    Available online 22 May 2023The Mount Woods Domain, in the northeastern Gawler Craton, occupies a tectonically important location in Proterozoic Australia, yet there is very little published U–Pb geochronology data from this region to underpin tectonic models. New LA-ICP-MS U–Pb monazite and detrital zircon geochronology reveal Archean to Paleoproterozoic basement in the central Mount Woods Domain, comprising metasedimentary rocks and garnet-bearing granite with protolith ages of c. 2550–2400 Ma and metasedimentary rocks deposited after c. 1855 Ma. The southern Mount Woods Domain contains younger metasedimentary sequences deposited after 1750 Ma. Metamorphic monazite and zircon geochronology combined with phase equilibria modelling show the rocks of the central Mount Woods Domain were metamorphosed to granulite facies between 1700 and 1670 Ma, reaching pressure and temperature conditions of 4.8–5.3 kbar and 800–840 ◦C. Monazite geochronology from samples located along major shear zones and in the westernmost Mount Woods Domain record amphibolite facies metamorphism and reworking at 1570–1550 Ma, with a further phase of shear zone activity along the northern margin of the Mount Woods Domain at c. 1480 Ma. Laser ablation inductively coupled plasma triple quadrupole mass spectrometry (LA-ICP-QQQ-MS) Rb–Sr biotite ages from across the Mount Woods Domain range between 1480 and 1390 Ma. The protracted geological history in the Mount Woods Domain from c. 2500–1400 Ma provides a piercing point linking different regions of Proterozoic Australia and western Laurentia during the tenure of the Nuna supercontinent.Laura J. Morrissey, Justin L. Payne, Martin Hand, Chris Clark, Matthew Janick
    corecore