108 research outputs found

    Paracrine IL-2 Is Required for Optimal Type 2 Effector Cytokine Production

    Get PDF
    IL-2 is a pleiotropic cytokine that promotes the differentiation of Th cell subsets, including Th1, Th2, and Th9 cells, but it impairs the development of Th17 and T follicular helper cells. Although IL-2 is produced by all polarized Th subsets to some level, how it impacts cytokine production when effector T cells are restimulated is unknown. We show in this article that Golgi transport inhibitors (GTIs) blocked IL-9 production. Mechanistically, GTIs blocked secretion of IL-2 that normally feeds back in a paracrine manner to promote STAT5 activation and IL-9 production. IL-2 feedback had no effect on Th1- or Th17-signature cytokine production, but it promoted Th2- and Th9-associated cytokine expression. These data suggest that the use of GTIs results in an underestimation of the presence of type 2 cytokine-secreting cells and highlight IL-2 as a critical component in optimal cytokine production by Th2 and Th9 cells in vitro and in vivo

    Phylogenic analysis of serotype Asia1 foot-and-mouth disease virus from Sulaimani/Iraq using VP1 protein: heterogeneity with vaccine strain As1/Shamir/89

    Get PDF
    Foot-and-mouth disease virus (FMDV) serotypes O, A and Asia1 are responsible for a significant number of disease outbreaks in Iraq. The current study can be considered as the first molecular characterization of serotype Asia1 in Iraq. The present investigation reports the detection of serotype FMDV Asia1 from local farms in Sulaimani districts in 2012 and 2014 outbreaks. Phylogenetic analysis of the complete VP1 gene has shown that FMDV Asia1 field isolates were under genetic novel variant Sindh-08 (group VII) including PAK/iso/11 and TUR/13 strains. The VP1 protein sequence of circulatory FMDV Asia1 genotype showed heterogeneity of nine amino acid substitutions within the G-H loop with the vaccine strain As1/Shamir/89 (JF739177) that is currently used in vaccination program in Iraq. Our result indicated that differences in VP1 protein at G-H loop of the locally circulated FMDV serotype Asia1 strain may be a reason for current vaccination failure

    Molecular Typing of Canine Parvovirus from Sulaimani, Iraq and Phylogenetic Analysis Using Partial Vp2 Gene

    Get PDF
    Canine parvovirus (CPV) remains the most significant viral cause of haemorrhagic enteritis and bloody diarrhoea in puppies over the age of 12 weeks. The objective of the present study was to detect and genotype CPV-2 by polymerase chain reaction (PCR) and to perform phylogenetic analysis using partial VP2 gene sequences. We analysed eight faecal samples of unvaccinated dogs with signs of vomiting and bloody diarrhoea during the period from December 2013 to May 2014 in different locations in Sulaimani, Kurdistan, Iraq. After PCR detection, we found that all viral sequences in our study were CPV-2b variants, which differed genetically by 0.8% to 3.6% from five commercially available vaccines. Alignment between eight nucleotides of field virus sequences showed 95% to 99.5% similarity. The phylogenetic analysis for the 8 field sequences formed two distinct clusters with two sequences belonging to strains from China and Thailand and the other six - with a strain from Egypt. Molecular characterisation and CPV typing are crucial in epidemiological studies for future prevention and control of the disease

    Comparison of diagnostic accuracy of early screening for pre-eclampsia by NICE guidelines and a method combining maternal factors and biomarkers: results of SPREE

    Get PDF
    Objective To test the hypothesis that the performance of first-trimester screening for pre-eclampsia (PE) by a method that uses Bayes’ theorem to combine maternal factors with biomarkers is superior to that defined by current National Institute for Health and Care Excellence (NICE) guidelines. Methods This was a prospective multicenter study (screening program for pre-eclampsia (SPREE)) in seven National Health Service maternity hospitals in England, of women recruited between April and December 2016. Singleton pregnancies at 11–13weeks’ gestation had recording of maternal characteristics and medical history and measurements of mean arterial pressure (MAP), uterine artery pulsatility index (UtA-PI), serum placental growth factor (PlGF) and serum pregnancy-associated plasma protein-A (PAPP-A). The performance of screening for PE by the Bayes’ theorem-based method was compared with that of the NICE method. Primary comparison was detection rate (DR) using NICE method vs mini-combined test (maternal factors, MAP and PAPP-A) in the prediction of PE at any gestational age (all-PE) for the same screen-positive rate determined by the NICE method. Key secondary comparisons were DR of screening recommended by the NICE guidelines vs three Bayes’ theorem-based methods (maternal factors, MAP and PAPP-A; maternal factors, MAP and PlGF; and maternal factors, MAP, UtA-PI and PlGF) in the prediction of preterm PE, defined as that requiring delivery <37 weeks. Results All-PE developed in 473 (2.8%) of the 16 747 pregnancies and preterm PE developed in 142 (0.8%). The screen-positive rate by the NICE method was 10.3% and the DR for all-PE was 30.4% and for preterm PE it was 40.8%. Compliance with the NICE recommendation that women at high risk for PE should be treated with aspirin from the first trimester to the end of pregnancy was only 23%. The DR of the mini-combined test for all-PE was 42.5%, which was superior to that of the NICE method by 12.1% (95% CI, 7.9–16.2%). In screening for preterm PE by a combination of maternal factors, MAP and PlGF, the DR was 69.0%, which was superior to that of the NICE method by 28.2% (95% CI, 19.4–37.0%) and with the addition of UtA-PI the DR was 82.4%, which was higher than that of the NICE method by 41.6% (95% CI, 33.2–49.9%). Conclusions The performance of screening for PE as currently recommended by NICE guidelines is poor and compliance with these guidelines is low. The performance of screening is substantially improved by a method combining maternal factors with biomarkers

    Granzyme A-producing T helper cells are critical for acute graft-versus-host disease

    Get PDF
    Acute graft-versus-host disease (aGVHD) can occur after hematopoietic cell transplant in patients undergoing treatment for hematological malignancies or inborn errors. Although CD4+ T helper (Th) cells play a major role in aGVHD, the mechanisms by which they contribute, particularly within the intestines, have remained elusive. We have identified a potentially novel subset of Th cells that accumulated in the intestines and produced the serine protease granzyme A (GrA). GrA+ Th cells were distinct from other Th lineages and exhibited a noncytolytic phenotype. In vitro, GrA+ Th cells differentiated in the presence of IL-4, IL-6, and IL-21 and were transcriptionally unique from cells cultured with either IL-4 or the IL-6/IL-21 combination alone. In vivo, both STAT3 and STAT6 were required for GrA+ Th cell differentiation and played roles in maintenance of the lineage identity. Importantly, GrA+ Th cells promoted aGVHD-associated morbidity and mortality and contributed to crypt destruction within intestines but were not required for the beneficial graft-versus-leukemia effect. Our data indicate that GrA+ Th cells represent a distinct Th subset and are critical mediators of aGVHD

    Genomic Arrangement of Regulons in Bacterial Genomes

    Get PDF
    Regulons, as groups of transcriptionally co-regulated operons, are the basic units of cellular response systems in bacterial cells. While the concept has been long and widely used in bacterial studies since it was first proposed in 1964, very little is known about how its component operons are arranged in a bacterial genome. We present a computational study to elucidate of the organizational principles of regulons in a bacterial genome, based on the experimentally validated regulons of E. coli and B. subtilis. Our results indicate that (1) genomic locations of transcriptional factors (TFs) are under stronger evolutionary constraints than those of the operons they regulate so changing a TF's genomic location will have larger impact to the bacterium than changing the genomic position of any of its target operons; (2) operons of regulons are generally not uniformly distributed in the genome but tend to form a few closely located clusters, which generally consist of genes working in the same metabolic pathways; and (3) the global arrangement of the component operons of all the regulons in a genome tends to minimize a simple scoring function, indicating that the global arrangement of regulons follows simple organizational principles

    PINT: Pathways INtegration Tool

    Get PDF
    New pathway databases generally display pathways by retrieving information from a database dynamically. Some of them even provide their pathways in SBML or other exchangeable formats. Integrating these models is a challenging work, because these models were not built in the same way. Pathways integration Tool (PINT) may integrate the standard SBML files. Since these files may be obtained from different sources, any inconsistency in component names can be revised by using an annotation editor upon uploading a pathway model. This integration function greatly simplifies the building of a complex model from small models. To get new users started, about 190 curated public models of human pathways were collected by PINT. Relevant models can be selected and sent to the workbench by using a user-friendly query interface, which also accepts a gene list derived from high-throughput experiments. The models on the workbench, from either a public or a private source, can be integrated and painted. The painting function is useful for highlighting important genes or even their expression level on a merged pathway diagram, so that the biological significance can be revealed. This tool is freely available at http://csb2.ym.edu.tw/pint/

    Single-cell RNA sequencing uncovers the nuclear decoy lincRNA PIRAT as a regulator of systemic monocyte immunity during COVID-19

    Get PDF
    The systemic immune response to viral infection is shaped by master transcription fac-tors, such as NF-κB, STAT1, or PU.1. Although long noncoding RNAs (lncRNAs)have been suggested as important regulators of transcription factor activity, their contri-butions to the systemic immunopathologies observed during SARS-CoV-2 infectionhave remained unknown. Here, we employed a targeted single-cell RNA sequencingapproach to reveal lncRNAs differentially expressed in blood leukocytes during severeCOVID-19. Our results uncover the lncRNA PIRAT (PU.1-induced regulator of alar-min transcription) as a major PU.1 feedback-regulator in monocytes, governing the pro-duction of the alarmins S100A8/A9, key drivers of COVID-19 pathogenesis. Knockoutand transgene expression, combined with chromatin-occupancy profiling, characterizedPIRATasanucleardecoyRNA,keepingPU.1frombindingtoalarminpromotersandpromoting its binding to pseudogenes in naïve monocytes. NF-κB–dependent PIRATdown-regulation during COVID-19 consequently releases a transcriptional brake, fuelingalarmin production. Alarmin expression is additionally enhanced by the up-regulation ofthe lncRNA LUCAT1, which promotes NF-κB–dependentgeneexpressionattheexpenseof targets of the JAK-STAT pathway. Our results suggest a major role of nuclear noncod-ing RNA networks in systemic antiviral responses to SARS-CoV-2 in humans

    Structural correlations in bacterial metabolic networks

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Evolution of metabolism occurs through the acquisition and loss of genes whose products acts as enzymes in metabolic reactions, and from a presumably simple primordial metabolism the organisms living today have evolved complex and highly variable metabolisms. We have studied this phenomenon by comparing the metabolic networks of 134 bacterial species with known phylogenetic relationships, and by studying a neutral model of metabolic network evolution.</p> <p>Results</p> <p>We consider the 'union-network' of 134 bacterial metabolisms, and also the union of two smaller subsets of closely related species. Each reaction-node is tagged with the number of organisms it belongs to, which we denote organism degree (OD), a key concept in our study. Network analysis shows that common reactions are found at the centre of the network and that the average OD decreases as we move to the periphery. Nodes of the same OD are also more likely to be connected to each other compared to a random OD relabelling based on their occurrence in the real data. This trend persists up to a distance of around five reactions. A simple growth model of metabolic networks is used to investigate the biochemical constraints put on metabolic-network evolution. Despite this seemingly drastic simplification, a 'union-network' of a collection of unrelated model networks, free of any selective pressure, still exhibit similar structural features as their bacterial counterpart.</p> <p>Conclusions</p> <p>The OD distribution quantifies topological properties of the evolutionary history of bacterial metabolic networks, and lends additional support to the importance of horizontal gene transfer during bacterial metabolic evolution where new reactions are attached at the periphery of the network. The neutral model of metabolic network growth can reproduce the main features of real networks, but we observe that the real networks contain a smaller common core, while they are more similar at the periphery of the network. This suggests that natural selection and biochemical correlations can act both to diversify and to narrow down metabolic evolution.</p

    The DESiGN trial (DEtection of Small for Gestational age Neonate), evaluating the effect of the Growth Assessment Protocol (GAP): study protocol for a randomised controlled trial.

    Get PDF
    BACKGROUND: Stillbirth rates in the United Kingdom (UK) are amongst the highest of all developed nations. The association between small-for-gestational-age (SGA) foetuses and stillbirth is well established, and observational studies suggest that improved antenatal detection of SGA babies may halve the stillbirth rate. The Growth Assessment Protocol (GAP) describes a complex intervention that includes risk assessment for SGA and screening using customised fundal-height growth charts. Increased detection of SGA from the use of GAP has been implicated in the reduction of stillbirth rates by 22%, in observational studies of UK regions where GAP uptake was high. This study will be the first randomised controlled trial examining the clinical efficacy, health economics and implementation of the GAP programme in the antenatal detection of SGA. METHODS/DESIGN: In this randomised controlled trial, clusters comprising a maternity unit (or National Health Service Trust) were randomised to either implementation of the GAP programme, or standard care. The primary outcome is the rate of antenatal ultrasound detection of SGA in infants found to be SGA at birth by both population and customised standards, as this is recognised as being the group with highest risk for perinatal morbidity and mortality. Secondary outcomes include antenatal detection of SGA by population centiles, antenatal detection of SGA by customised centiles, short-term maternal and neonatal outcomes, resource use and economic consequences, and a process evaluation of GAP implementation. Qualitative interviews will be performed to assess facilitators and barriers to implementation of GAP. DISCUSSION: This study will be the first to provide data and outcomes from a randomised controlled trial investigating the potential difference between the GAP programme compared to standard care for antenatal ultrasound detection of SGA infants. Accurate information on the performance and service provision requirements of the GAP protocol has the potential to inform national policy decisions on methods to reduce the rate of stillbirth. TRIAL REGISTRATION: Primary registry and trial identifying number: ISRCTN 67698474 . Registered on 2 November 2016
    corecore