33 research outputs found

    Which environmental variables should I use in my biodiversity model?

    Get PDF
    Appropriate selection of environmental variables is critical to the performance of biodiversity models, but has received less attention than the choice of modelling method. Online aggregators of biological and environmental data, such as the Global Biodiversity Information Facility and the Atlas of Living Australia, necessitate a rational approach to variable selection. We outline a set of general principles for systematically identifying, compiling, evaluating and selecting environmental variables for a biodiversity model. Our approach aims to maximise the information obtained from the analysis of biological records linked to a potentially large suite of spatial environmental variables. We demonstrate the utility of this structured framework through case studies with Australian vascular plants: regional modelling of a species distribution, continent-wide modelling of species compositional turnover and environmental classification. The approach is informed by three components of a biodiversity model: (1) an ecological framework or conceptual model, (2) a data model concerning availability, resolution and variable selection and (3) a method for analysing data. We expand the data model in structuring the problem of choosing environmental variables. The case studies demonstrate a structured approach for the: (1) cost-effective compilation of variables in the context of an explicit ecological framework for the study, attribute accuracy and resolution; (2) evaluation of non-linear relationships between variables using knowledge of their derivation, scatter plots and dissimilarity matrices; (3) selection and grouping of variables based on hypotheses of relative ecological importance and perceived predictor effectiveness; (4) systematic testing of variables as predictors through the process of model building and refinement and (5) model critique, inference and synthesis using direct gradient analysis to evaluate the shape of response curves in the context of ecological theory by presenting predictions in both geographic and environmental space

    Dissecting the Shared Genetic Architecture of Suicide Attempt, Psychiatric Disorders, and Known Risk Factors

    Get PDF
    Background Suicide is a leading cause of death worldwide, and nonfatal suicide attempts, which occur far more frequently, are a major source of disability and social and economic burden. Both have substantial genetic etiology, which is partially shared and partially distinct from that of related psychiatric disorders. Methods We conducted a genome-wide association study (GWAS) of 29,782 suicide attempt (SA) cases and 519,961 controls in the International Suicide Genetics Consortium (ISGC). The GWAS of SA was conditioned on psychiatric disorders using GWAS summary statistics via multitrait-based conditional and joint analysis, to remove genetic effects on SA mediated by psychiatric disorders. We investigated the shared and divergent genetic architectures of SA, psychiatric disorders, and other known risk factors. Results Two loci reached genome-wide significance for SA: the major histocompatibility complex and an intergenic locus on chromosome 7, the latter of which remained associated with SA after conditioning on psychiatric disorders and replicated in an independent cohort from the Million Veteran Program. This locus has been implicated in risk-taking behavior, smoking, and insomnia. SA showed strong genetic correlation with psychiatric disorders, particularly major depression, and also with smoking, pain, risk-taking behavior, sleep disturbances, lower educational attainment, reproductive traits, lower socioeconomic status, and poorer general health. After conditioning on psychiatric disorders, the genetic correlations between SA and psychiatric disorders decreased, whereas those with nonpsychiatric traits remained largely unchanged. Conclusions Our results identify a risk locus that contributes more strongly to SA than other phenotypes and suggest a shared underlying biology between SA and known risk factors that is not mediated by psychiatric disorders.Peer reviewe

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Co-creating service experience practices

    No full text
    Purpose - The purpose of this paper is threefold: to introduce a practice-based framework designed to integrate and deepen our understanding of how individuals co-create service experience practices; to identify co-creating service experience practices; and to provide a compelling agenda for future research, and offer practical strategies to enhance co-created service experiences. Accordingly, we extend practice theory, building on Kjellberg and Helgesson's (2006) practice-based framework for markets by integrating Holt's (1995) consumer practices and social capital-based practices (Gittell and Vidal, 1998; Woolcock, 2001)

    Planning for the persistence of river biodiversity: exploring alternative futures using process-based models

    No full text
    1. Planning for the conservation of river biodiversity must involve a wide range of management options and account for the complication that the effects of many actions are spatially removed from these actions. Reserve design algorithms widely used in conservation planning today are not well equipped to address such complexities.2. We used process-based models to estimate the expected persistence of river biodiversity under alternative catchment-wide management scenarios and applied it in the Hunter Region (37 000 km2) in southeastern Australia.3. The biological condition of 12197 subcatchments was estimated using a multiple linear regression model that related assessments of the integrity of macroinvertebrate assemblages to human-induced disturbances at river sites. The best-fit model (R2=0.76) used measures of both local and catchment-wide disturbances as well as elevation and distance from source as predictor variables. Based on the outputs of this model, we estimated that substantial loss of river biodiversity had occurred in some parts of the coastal fringes and the lower parts of the larger river systems. The most affected river type was small, low-gradient streams.4. The predicted biodiversity condition together with river types based on macroinvertebrate assemblages and abiotic attributes was used to estimate a biodiversity persistence index (BDI).5. A priority value for each subcatchment was calculated for different actions by changing the disturbance values for that subcatchment and calculating the resulting marginal change in regional BDI. Maps were thereby created for three different types of priority: catchment protection priority, catchment restoration priority and river section conservation priority.6. The subcatchments of high catchment protection priority for river biodiversity were mostly in the uplands and within protected areas. The river sections of high conservation priority included many coastal lowland rivers in and around protected areas as well as many upland headwater streams. Subcatchments of high priority for catchment restoration were mostly in coastal areas or lowland floodplains.7. This approach may be particularly well suited to guide the integrated implementation of three place-based protection strategies proposed for freshwaters: focal areas, critical management zones and catchment management zones

    Which environmental variables should I use in my biodiversity model?

    No full text
    <div><p>Appropriate selection of environmental variables is critical to the performance of biodiversity models, but has received less attention than the choice of modelling method. Online aggregators of biological and environmental data, such as the Global Biodiversity Information Facility and the Atlas of Living Australia, necessitate a rational approach to variable selection. We outline a set of general principles for systematically identifying, compiling, evaluating and selecting environmental variables for a biodiversity model. Our approach aims to maximise the information obtained from the analysis of biological records linked to a potentially large suite of spatial environmental variables. We demonstrate the utility of this structured framework through case studies with Australian vascular plants: regional modelling of a species distribution, continent-wide modelling of species compositional turnover and environmental classification. The approach is informed by three components of a biodiversity model: (1) an ecological framework or conceptual model, (2) a data model concerning availability, resolution and variable selection and (3) a method for analysing data. We expand the data model in structuring the problem of choosing environmental variables. The case studies demonstrate a structured approach for the: (1) cost-effective compilation of variables in the context of an explicit ecological framework for the study, attribute accuracy and resolution; (2) evaluation of non-linear relationships between variables using knowledge of their derivation, scatter plots and dissimilarity matrices; (3) selection and grouping of variables based on hypotheses of relative ecological importance and perceived predictor effectiveness; (4) systematic testing of variables as predictors through the process of model building and refinement and (5) model critique, inference and synthesis using direct gradient analysis to evaluate the shape of response curves in the context of ecological theory by presenting predictions in both geographic and environmental space.</p> </div
    corecore