
This article was downloaded by: [Australian National University]
On: 07 January 2013, At: 16:56
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered
office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

International Journal of Geographical
Information Science
Publication details, including instructions for authors and
subscription information:
http://www.tandfonline.com/loi/tgis20

Which environmental variables should I
use in my biodiversity model?
Kristen J. Williams a , Lee Belbin b , Michael P. Austin a , Janet L.
Stein c & Simon Ferrier a
a Ecosystem Sciences, CSIRO, Canberra, Australia
b Atlas of Living Australia, Hobart, Australia
c Fenner School of Environment and Society, Australian National
University, Canberra, Australia
Version of record first published: 09 Jul 2012.

To cite this article: Kristen J. Williams , Lee Belbin , Michael P. Austin , Janet L. Stein & Simon
Ferrier (2012): Which environmental variables should I use in my biodiversity model?, International
Journal of Geographical Information Science, 26:11, 2009-2047

To link to this article:  http://dx.doi.org/10.1080/13658816.2012.698015

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-
conditions

This article may be used for research, teaching, and private study purposes. Any
substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing,
systematic supply, or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation
that the contents will be complete or accurate or up to date. The accuracy of any
instructions, formulae, and drug doses should be independently verified with primary
sources. The publisher shall not be liable for any loss, actions, claims, proceedings,
demand, or costs or damages whatsoever or howsoever caused arising directly or
indirectly in connection with or arising out of the use of this material.



International Journal of Geographical Information Science
Vol. 26, No. 11, November 2012, 2009–2047

Which environmental variables should I use in my biodiversity model?

Kristen J. Williamsa*, Lee Belbinb , Michael P. Austina , Janet L. Steinc and Simon Ferriera

aEcosystem Sciences, CSIRO, Canberra, Australia; bAtlas of Living Australia, Hobart, Australia;
cFenner School of Environment and Society, Australian National University, Canberra, Australia

(Received 14 January 2012; final version received 21 May 2012)

Appropriate selection of environmental variables is critical to the performance of
biodiversity models, but has received less attention than the choice of modelling
method. Online aggregators of biological and environmental data, such as the Global
Biodiversity Information Facility and the Atlas of Living Australia, necessitate a
rational approach to variable selection. We outline a set of general principles for sys-
tematically identifying, compiling, evaluating and selecting environmental variables for
a biodiversity model. Our approach aims to maximise the information obtained from
the analysis of biological records linked to a potentially large suite of spatial envi-
ronmental variables. We demonstrate the utility of this structured framework through
case studies with Australian vascular plants: regional modelling of a species distribu-
tion, continent-wide modelling of species compositional turnover and environmental
classification. The approach is informed by three components of a biodiversity model:
(1) an ecological framework or conceptual model, (2) a data model concerning avail-
ability, resolution and variable selection and (3) a method for analysing data. We expand
the data model in structuring the problem of choosing environmental variables. The
case studies demonstrate a structured approach for the: (1) cost-effective compilation
of variables in the context of an explicit ecological framework for the study, attribute
accuracy and resolution; (2) evaluation of non-linear relationships between variables
using knowledge of their derivation, scatter plots and dissimilarity matrices; (3) selec-
tion and grouping of variables based on hypotheses of relative ecological importance
and perceived predictor effectiveness; (4) systematic testing of variables as predictors
through the process of model building and refinement and (5) model critique, inference
and synthesis using direct gradient analysis to evaluate the shape of response curves
in the context of ecological theory by presenting predictions in both geographic and
environmental space.

Keywords: environmental variables; Atlas of Living Australia; species distribu-
tion modelling; MaxEnt; generalised dissimilarity modelling; association analysis;
classification; guidelines

1. Introduction

There is an increasing trend towards free and open access to primary biodiversity and
environmental data via web servers for use in ecological research, natural resources
management and conservation decision-making. Data aggregators such as the Global
Biodiversity Information Facility (GBIF; http://www.gbif.org/) and the Atlas of Living
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Australia (ALA; http://www.ala.org.au/) facilitate the use of information about the occur-
rence of organisms. In addition, various national and global networks collect, manage
and disseminate a wide range of environmental data (Hijmans et al. 2005, Hutchinson
et al. 2008, Gallant and Read 2009, Minasny and McBratney 2010). This increase in data
availability has been accompanied by open-access software to characterise the patterns
and trends in biological and environmental data (e.g. generalised dissimilarity modelling
(GDM, Ferrier et al. 2007), MaxEnt (Phillips and Dudík 2008) and Biodiverse (Laffan
et al. 2010)). The spatial portal of the Atlas of Living Australia (http://spatial.ala.org.
au/), for example, enables analysts to use millions of taxon observations to predict dis-
tributions or build an environmental domain classification from over 250 environmental
layers (see http://dashboard.ala.org.au/dashboard/). These variables describe globally rel-
evant facets of climate, soil and terrain. However, ready access to data and analytical tools
does not solve the problem of deciding which environmental variables are appropriate for
use in a biodiversity model. Appropriate selection of environmental variables is critical to
the performance of the model and its potential application in prediction and explanation
(Austin 2002b, Elith and Leathwick 2009), but has received less attention than the choice
of modelling method (Franklin 2009).

Making decisions about which environmental variables to use and their relative con-
tribution remains a challenge for species distribution modelling (Araújo and Guisan 2006,
Peterson and Nakazawa 2008, Franklin 2009, Ashcroft et al. 2011, Austin and Van Niel
2011, Peterson et al. 2011). Some researchers may purposefully limit their analyses a priori
to a few justified or easily measured predictors (Austin et al. 1990) with the resultant
potential for under-specified models. Others may draw upon a more comprehensive set of
variables (Williams et al. 2000) but risk over-fitting. Because the selection of predictor
variables is a critical step in modelling species distributions, Araújo and Guisan (2006)
suggested that more attention should be given to the explanatory power and ecological
basis for choosing variables. They and other workers emphasised the importance of select-
ing variables that are physiologically relevant (Franklin 1995, Austin 2007, Austin and Van
Niel 2011).

Selecting environmental variables is one component of a structured approach to
biodiversity distribution modelling that comprises (1) an ecological framework or concep-
tual model, which includes the theory used to link environmental predictors to biodiversity
distribution; (2) a data model, which considers data availability, resolution and selection,
and (3) a statistical model, which includes the modelling method and the selection of
explanatory variables during model building and evaluation (Austin 2002b).

In this article, we first review how these three components interact to influence the
selection of spatial environmental variables through an expansion of the framework for a
data model. We then demonstrate this structured approach to identifying, compiling, evalu-
ating and selecting environmental variables through three typical applications in vegetation
science: (1) regional modelling of a species distribution, (2) continent-wide modelling of
spatial turnover in species composition and (3) environmental classification. We conclude
by outlining a set of general principles to guide future applications.

2. A structured approach to biodiversity distribution modelling

2.1. The ecological model or conceptual framework

Conceptual underpinnings in ecology are prerequisites for deciding what facets of
environment are likely to be of interest, given a particular taxon and modelling purpose
(Austin 2007). For example, seven groups of variables are usually associated with
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vegetation responses: light, temperature, nutrients, water, CO2, disturbance and biota
(Austin and Van Niel 2011). The complexity of relationships between environmental gra-
dients and plant distribution are described diagrammatically by Guisan and co-workers
(Guisan and Zimmermann 2000, Guisan and Thuiller 2005). Drawing on the continuum
concept in vegetation ecology, this framework distinguishes factors that are functionally
relevant to the physiology of a species and its fundamental niche and other ecological con-
straints such as species interactions, disturbance regimes and biogeographic barriers that
limit species occurrence. A wide range of environmental conditions and biotic interactions
act together to determine the dynamic trade-offs in growth and development processes, at
the physiological and molecular levels, thereby influencing the occurrence and behaviour
of species at the individual and population level (Smith and Huston 1989). These con-
ceptual frameworks provide a checklist of the broad groups of environmental factors to
be considered ‘a priori’ (i.e. knowledge is justified by arguments of a certain kind) for
inclusion in a model and distinguish variables that are either proximal or distally related to
the resources and conditions controlling growth, reproduction, morphology and behaviour
(Austin 2005, Franklin 2009).

2.2. The data model

The data model considers the response and explanatory data that are used for a given
purpose. Biodiversity distribution models typically use the presence–absence data from
systematic surveys, the presence-only data from aggregations of opportunistic observations
and/or the records from museum or herbarium collections. For example, generalised addi-
tive modelling of species distributions is an appropriate technique for presence–absence
data, whereas MaxEnt is better used with presence-only data (Elith et al. 2011). In species
composition (community-level) analyses, such as applications of GDM (Ferrier et al.
2007), the presence–absence data are preferred (Ferrier and Guisan 2006). However, the
relatively large amount of presence-only data from aggregators, such as the GBIF, can
reduce the effects of geographic and environmental bias, allowing its wider use as a proxy
for presence–absence data in analysing the environmental determinants of species compo-
sition (Kent and Carmel 2011). Irrespective of the biodiversity response variables (species
occurrence, abundance and compositional dissimilarity), the same conceptual framework
applies for selecting environmental variables relevant to a study. We recognize four stages
in the process of selecting environmental variables: identifying, compiling, evaluating and
testing the fit (model building), as outlined in Figure 1.

2.2.1. Identifying the resolution and extent of spatial environmental variables

The outcomes of an analysis are critically affected by the resolution of the data and the
geographic extent of the study area. Resolution and extent are considerations in searching
for environmental variables relevant to the study’s purpose (Figure 1). Despite well-
established guidelines for selecting an ecological analysis region (Austin et al. 1996,
Anderson and Raza 2010), many studies still define extent by jurisdiction or planning
boundaries. To avoid truncated model predictions, the analysis region should include the
known environmental or geographic limits of the study taxon. For example, Williams and
Potts (1996) mapped the broad geographic range of Eucalyptus species in Tasmania as a
basis for systematically defining the ecological analysis region used in generalised lin-
ear models of individual species’ distributions (applied in Williams (1998)). Similarly,
MaxEnt requires the landscape of interest to be defined by the ecologist as encompassing
the expected predicted range of the species (Elith et al. 2011).
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2012 K.J. Williams et al.

Figure 1. An expansion of the data model within the framework for spatial prediction illustrating
the relationship between the data model, ecological model and statistical model for the purpose of
selecting environmental variables for use in a biodiversity model. The data model is central to the
process and interacts with the other framework model components (blue boxes). The overarching
purpose of the study determines the underpinning ecological theory, data and statistical model. The
green boxes represent stages in the process of selecting environmental layers grouped into four prin-
ciple activities, in order: identifying, compiling, evaluating and selecting environmental variables.
The red box highlights the outcome of the activities. Dotted lines indicate activities that may be
conducted iteratively or where feedback affects a previous decision.

Although the purpose of the study and observation scale of the response variable
dictate the desired spatial resolution of environmental variables, a lack of suitable res-
olution for explanatory data and sparse sampling of response data both influence the
predictive resolution of the model (dotted lines in Figure 1). Ideally, the scale of the
response and explanatory data should match closely (Graf et al. 2005, Guisan et al. 2007,
Kaliontzopoulou et al. 2008). In practice, however, environmental variables of varying
resolution are compiled and resampled to a common spatial grid for modelling (Elith
and Leathwick 2009). The resolution of the grid aims to balance the resolution of key
explanatory variables and the observation scale of the response.

The predictive resolution of the response then depends on the representativeness and
intensity of sampling. Sparsely sampled regions generally contain less information about
the relationship between response and explanatory variables than more densely sampled
regions. In these situations, fewer variables may be required to adequately predict the
regions of broadly similar environments, but will inadequately define the range limits
(Pearson et al. 2007). While some analysts may consider coarsening the spatial resolution
of environmental variables to match the information content of sparsely sampled regions
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prior to model building, a more effective approach is to develop a model using the best
available data and post hoc determine the classification resolution of the prediction map
using spatial statistics (Hagen-Zanker 2009).

2.2.2. Scope of environmental predictors to compile for a study

Considering the large number of environmental variables potentially relevant to a study,
the challenge is to find appropriate sets of proximal variables consistent with the knowl-
edge of biophysical process and study resolution (Franklin 2009). The first step is to
review what is known about the ecology and physiology of the biodiversity of interest
to inform hypotheses describing the relationship between the response and a desired set of
explanatory variables.

Figure 2, adapted from Guisan and Zimmermann (2000), shows the compilation of
predictors for a vegetation modelling project. Arrows in the figure show how particular
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Figure 2. Example of a conceptual model of relationships between resources, direct and indirect
environmental gradients and their influence on growth, performance and geographical distribution of
vascular plants and vegetation. Reproduced with permission from Guisan and Zimmermann (2000;
Figure 3).
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indirect variables interact to generate more direct environmental drivers through biophys-
ical process models: nutrients, soil and atmospheric water balance, thermal development
conditions and photosynthetically active radiation. Plant distributions are also influenced
by stochastic processes such as extreme heat or cold, landslip or erosion, high winds,
drought, flood and fire. Therefore, environmental variables that directly influence a wide
range of climatic and disturbance regimes via their rate, intensity, duration and frequency
may be required to effectively model distribution patterns. Direct and indirect proxies for
these variables can be compiled from existing sources or generated by modelling these
processes.

Physiologically relevant environmental measures are expected to lead to more robust
ecological models and may justify the effort required to model these processes. For exam-
ple, Leathwick and Whitehead (2001) found that derivation of more direct measures of air
and soil water deficit improved models of New Zealand tree species. Battaglia and Williams
(1996) demonstrated that common measurement units for soil moisture distinguished the
ecotonal gradient between two co-occurring Eucalyptus species at both physiological and
landscape scales.

An environmental variable may act both as a resource that provides building blocks
for growth processes and as a condition that fulfils the requirements for physiological
processes to function effectively. For example, solar radiation, in addition to being a
resource that determines primary productivity, plays an important role as a condition in
regulating or controlling the phases of growth, development and defence in plants through
various forms of light quality perception and wavelength signalling (Kazan and Manners
2011).

Various measures of geographic and topographic positions (latitude, longitude, altitude,
slope and aspect) represent indirect environmental gradients that influence biodiversity
via correlated proximal variables (Austin 2002b). Models that include such indirect vari-
ables along with direct variables may be justified where biophysical process models are
incompletely specified, critical data are missing for particular factors or issues of attribute
accuracy and spatial resolution limit their effectiveness. For example, Ashcroft et al. (2008)
developed exposure indices based on topographic protection to serve as a proxy for the
effect of seasonally prevailing winds on local soil moisture and humidity in the absence of
the proximal predictor. Similarly, maps of surface geology (lithology) may be used even
though indirectly related to aspects of the soil environment via the water balance, nutrient
availability, plant support and root exploration. Assuming they correlate consistently with
direct gradients, indirect predictors or their proximal derivatives may be justified in the
absence of more direct estimates in a biodiversity model.

2.2.3. Evaluating the environmental predictors that are used in model building

The common physical and biological processes that relate candidate environmental pre-
dictors provide insight into their multivariate correlations (Figure 2). Potentially redundant
variables can be distinguished from relatively independent variables using a correlation
analysis that accounts for non-linearity in pair-wise relationships. For example, Elith et al.
(2010; Appendix s4) used 18 agro-climatic regions as defined by Hutchinson et al. (2005)
to account for spatially non-linear patterns in pair-wise Pearson’s correlation coefficients.
The different sets of correlation coefficients in each region informed the choice of rel-
atively independent variables used in the respective species distribution models. This
process is informative but not definitive as pair-wise correlations between environmental
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variables do not necessarily reveal the most effective environmental predictors because
response–explanatory relationships are typically non-linear (Austin and Smith 1989).

2.3. Testing the fit of variables using a statistical model

With a potentially large number of alternative combinations of variables to consider, a
structured framework for testing significance and eliminating variables that perform poorly
is essential. Araújo and Guisan (2006) identified improved model selection and predictor
contribution as one of the significant challenges in species distribution modelling. The
process of fitting a statistical model provides both a test of the utility of candidate envi-
ronmental variables and feeds back into the design of the data model (dotted lines in
Figure 1).

Statisticians have developed different approaches to the problem of selecting significant
predictors in regression-based modelling and evaluating the overall model performance
(Hosmer and Lemeshow 1989). The common approaches to variable selection include
backward, forward and stepwise procedures, and some lesser known techniques such as
stage-wise (Hastie et al. 2007), best subset (King 2003) and purposeful (Bursac et al.
2008). However, automated procedures do not necessarily select the best set of explana-
tory variables, but a best subset based on the algorithm and set of criteria used (Pearce and
Ferrier 2000). Other statistical or data mining techniques such as boosted regression trees
can also assist with the selection of relevant variables (Elith et al. 2008, Magness et al.
2008), as can repeated permutations testing the match between response and explanatory
variables.

In our case studies, relatively independent subgroups of correlated variables are tested
separately before combining them, in an a priori order of importance, in a model. Our
framework guides the identification of direct/proximal variables that are initially tested
followed by tests for the additional effect of indirect variables. Therefore, identification of
redundant variables relies on a combination of a priori ecological considerations, knowl-
edge of the derivation and accuracy of each variable, awareness of relationships among
variables and a rigorous process of testing the utility of alternative sets of predictors in a
statistical model.

3. Methods

3.1. Case study context

We selected vascular plants as our study taxa and applied three ecological analysis methods
as case studies: a species distribution model for Eucalyptus delegatensis R.T. Baker (fam-
ily: Myrtaceae) using MaxEnt software (Phillips et al. 2006, Phillips and Dudík 2008);
a model of spatial turnover in vascular plant species composition using GDM software
(Ferrier et al. 2007) and an environmental domain analysis based on a non-hierarchical
classification using PATN software (Belbin 1987; http://www.patn.com.au). We chose
MaxEnt and GDM as these are robust methods for modelling presence-only response data
(Elith et al. 2006, 2011), sourced from aggregators such as the Atlas of Living Australia.

Our study area is the continent of Australia and proximate islands with a land area of
7.7 million square kilometres. Australia is mostly warm to hot and very dry with seasonally
wet or dry climates. A winter-dominated rainfall regime occurs in the south and a summer-
dominated regime occurs in the north. More than 80% of the continent has at least 3 months
each year without effective precipitation (Hutchinson et al. 2005).
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3.2. Environmental variables

We limited our investigation to the comprehensive set of environmental variables, com-
piled by Williams et al. (2010), available online via the Atlas of Living Australia (see
http://spatial.ala.org.au/layers). The variables represent the best available, nationally con-
sistent 0.01◦(∼1 km) resolution-gridded sources of climate, soil, geology and terrain
information as of November 2009 (summarised in Table 1).

Table 1. List of environmental variables, labels and units.

Group Data set Label

Water RAINI, RAINX Minimum (I) and maximum (X) of monthly rainfall
(mm)

RPRECMIN, RPRECMAX Minimum (MIN) and maximum (MAX) of monthly
rainfall difference between successive months
(mm/day)

EVAPI, EVAPX Minimum (I) and maximum (X) of monthly evaporation,
averaged over 25 years centred on 1982 (mm)

ARID_MIN, ARID_MAX Minimum and maximum of monthly aridity index as
ratio of precipitation to evaporation (dimensionless)

ADEFI, ADEFX Minimum (I) and maximum (X) of monthly
precipitation deficit as precipitation minus
evaporation (mm)

SRAIN1MP, SRAIN2MP Solstice (1) or equinox (2) rainfall seasonality ratio
(dimensionless)

SLRAIN1, SLRAIN2 Solstice (1) or equinox (2) rainfall seasonality factor
index

Energy RADNI, RADNX Minimum (I) and maximum (X) of monthly mean
rainfall-modified (cloudiness) solar radiation,
averaged over 25 years centred on 1982 (MJ/m2/day)

MINTI, MINTX Minimum (I) and maximum (X) of monthly mean
minimum temperature (◦C)

MAXTI, MAXTX Minimum (I) and maximum (X) of monthly mean
maximum temperature (◦C)

TMINSABSI, TMAXABSX Absolute minimum (I) and maximum (X) of daily
temperature per month, averaged over 50 years
centred on 1975 (◦C)

RTIMIN, RTIMAX Minimum (MIN) and maximum (MAX) of monthly
mean difference in minimum temperatures between
successive months (◦C/day)

RTXMIN, RTXMAX Minimum (MIN) and maximum (MAX) of monthly
mean difference in maximum temperatures between
successive months (◦C/day)

TRNGI, TRNGX Minimum (I) and maximum (X) of monthly mean
diurnal temperature range (◦C)

RH2MIN, RH2MAX Minimum (MIN) and maximum (MAX) of monthly
mean relative humidity, averaged over 25 years
centred on 1982 (%)

VPD2MIN, VPD2MAX Minimum (MIN) and maximum (MAX) of monthly
mean vapour pressure deficit, averaged over 25 years
centred on 1982 (kPa)

WINDSPMIN,
WINDSPMAX

Minimum (MIN) and maximum (MAX) of monthly
mean wind speed at 9 am or 3 pm, averaged over
25 years centred on 1982 (m/s)

(Continued)
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Table 1. (Continued).

Group Data set Label

WINDRMIN,
WINDRMAX

Minimum (MIN) and maximum (MAX) of monthly
wind run, averaged over 25 years centred on 1982
(km/day)

Soil DATASUPT Data levels supporting soil property interpretations
(index)

SOLDEPTH Solum depth (surface and subsoil layers) (metres)
SOLPAWHC Plant-available soil water-holding capacity estimated

from soil depth and clay content (mm)
WR_UNR Solum average unreliable water retention parameters

(index)
KSAT Solum average median horizon saturated hydraulic

conductivity (mm/h)
KS_ERR Solum average uncertainty of horizon saturated

hydraulic conductivity estimates (index)
CALCRETE Calcrete in or below soil profile (presence)
HPEDALITY Hydrological scoring of pedality (score)
COARSE Soils dominated by coarse fragments including

ironstone (class)
CLAY Solum average median clay content (%)
BDENSITY Solum average bulk density (mg/m3)
NUTRIENTS Gross nutrient status (rating)

Geoscience FERT Inherent rock fertility (rating)
GEOLLMEANAGE;

GEOLLRNGEAGE
Geological age (log10) mean and range (log10 M years)

GRAVITY Bouguer gravity anomalies (acceleration, Gal)
MAGNETICS Magnetic anomalies (nanoTesla, nT)
WII_WGS1KB Weathering intensity index

Terrain SLOPE Terrain slope (%)
RELIEF Terrain relief (metres)
ROUGHNESS Terrain roughness (%)
TWI Topographic wetness index (index)
MRVBF Valley bottom flatness (index)
MRRTF Ridgetop flatness (index)
VALLEYBOTTOM Local neighbourhood proportion valley bottoms (%)
RIDGETOPFLAT Local neighbourhood proportion ridge tops (%)
EROSIONAL Local neighbourhood proportion erosional surfaces (%)

Notes: Metadata for each variable can be viewed from the links provided at http://spatial.ala.org.au/layers.
The full association matrix can be downloaded from http://spatial.ala.org.au/files/inter_layer_association.csv.
Climate variables are long-term averages approximately centred on 1960, unless otherwise stated.

Climate is represented by 15 measures – rainfall, pan evaporation, precipitation deficit,
aridity, minimum and maximum temperatures, diurnal temperature range, solar radiation
(adjusted by rainfall as a surrogate for cloud cover), relative humidity, vapour pressure
deficit, wind speed, wind run and rates of rise and fall in rainfall and in minimum and max-
imum temperatures. Each of these measures is represented by 12 long-term, mean monthly
values as derived from ANUCLIM, software version 5.1 (Hutchinson et al. 2000). We eval-
uated the minimum and maximum monthly values of the annual variation because these
indices reflect distinct seasonal means, are directly related to plant response and are less
correlated with each other than either is with the annual mean. We included two compound
measures of water as potential substitutes for rainfall and evaporation: precipitation deficit
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(Harmsen et al. 2009) and aridity index (UNEP 1992 cited in Middleton and Thomas
1997). Two alternative measures of rainfall seasonality, both based on the ratio of summer
to winter or spring to autumn rainfall, were also included. One is a factor using the loga-
rithm of rainfall (detailed in Williams et al. (2010)) and the other a simple ratio (based on
Austin (1998)). We also include a measure of mean absolute monthly temperature derived
from 5 km gridded daily climate estimates for Australia (Jeffrey et al. 2001).

Substrate is represented by relatively coarse-resolution soil data and finer-resolution
terrain and geophysical data (Table 1). We also include spatial measures of soil attribute
interpretation reliability associated with the soil variables estimated from the Australian
soil classification (McKenzie and Hook 1992, McKenzie et al. 2000). We did not consider
variables derived from soil water and nutrient balance models, even though these are more
proximal, because the coarse-resolution soil data inaccurately partition water availability
into soil moisture, runoff and evaporative demand. Instead, we treated the soil and climate
variables as independent proxy variables.

We grouped these variables into direct or indirect predictors of plant species distri-
butions and noted whether these were proximal or distal to physiological processes of
vegetation growth and development. We also noted the relationship between pairs of vari-
ables and judged whether some variables are substitutes for one another and therefore not
sensibly combined in the same model. Finally, we ranked each variable according to its
perceived relative importance based on ecological rationale and to indicate the order in
which the variables might best be combined in a predictive model.

3.3. Correlation and scatter plots

Bivariate scatter plots of variables are a simple yet effective way to view the relationships
between pairs of variables and to identify potential outliers and data errors in biological
records. We generated scatter plots via the Atlas of Living Australia (http://spatial.ala.
org.au).

We introduced a simple alternative to the linear Pearson’s correlation coefficient by
averaging the range-standardized differences between variables. This amounts to a variant
of the Gower Metric (Gower 1971), hereafter referred to as dissimilarity. All values of each
layer are first range standardized on a 0:1 ratio scale. The measure then simply takes the
average of the differences between each layer for each cell. The resulting dissimilarity val-
ues represent a standardized ‘volume’ between each pair of environmental ‘layers’, ranging
from zero (variables are identical) to one (variables have nothing in common). A truly ran-
dom relationship produces a Gower dissimilarity value of 0.5. An inverse (complementary)
relationship produces a value around 0.7. The continental extent of the variables was used
for this analysis. Relationships would change if the comparison was limited to a region or
a local area.

3.4. Model building

We developed a repeatable, systematic approach to model building based on a forward
stage-wise iterative procedure for testing a large number of correlated variables where
it is impractical to test all variables simultaneously. This represents a cautious variant
of forward stepwise selection. Our approach has three components. First, relatively
independent subgroups of correlated variables are tested using backward elimination with
a conservative stopping criterion. Variables dropped in these initial tests are not included
in subsequent tests. Second, the remaining candidate variables in each subgroup were

D
ow

nl
oa

de
d 

by
 [A

us
tra

lia
n 

N
at

io
na

l U
ni

ve
rs

ity
] a

t 1
6:

56
 0

7 
Ja

nu
ar

y 
20

13
 



International Journal of Geographical Information Science 2019

Figure 3. Order in which groups of climate (precipitation, temperature, wind) and substrate (soil,
geoscience, terrain) variables were tested and combined in the MaxEnt and GDM models. Groups are
defined in the ‘test order’ column of Table 2 for climate variables and Table 3 for substrate variables.
Other variables specific to the GDM model were also tested.

included stage-wise in the MaxEnt and GDM models in order of their group’s a priori
perceived relative importance (Figure 3). As each group of variables was added, a sec-
ondary process of backward elimination removed the most marginal variables based on a
conservative stopping criterion (specified below). After all candidate variables have been
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assessed, the threshold for backward elimination may be increased to find an appropriate
trade-off between minimising the number of included variables in the model and excluding
variables that explain significant levels of residual variation.

3.4.1. MaxEnt model

Species distribution models derived using ecological knowledge can provide useful infor-
mation about potential eco-physiological limits and can also be used to infer parameters
for more mechanistic models (Williams et al. 2000) or experimentation (Battaglia and
Williams 1996). We demonstrate this for E. delegatensis, a tree species that occurs at higher
elevation cool climates in south-eastern Australia, with 216 presence-only records sourced
from the Atlas of Living Australia. Records were accepted where spatial precision was less
than or equal to 2 km, consistent with the average resolution of the environmental data. For
a high proportion of the records, this was less than or equal to 1 km. The analysis region
for the background data aims to encompass the expected predicted range of the species
(Elith et al. 2011). Assuming the presence-only records represent the complete geographic
range of the species, the analysis region was defined by the outer envelope of the recorded
presences buffered by 0.1◦ (∼10 km). Curvilinear transformations of the environmental
variables were tested using linear, quadratic and product features for each variable. These
are preset functions in the ALA implementation of MaxEnt. Variables contributing the
least information on the basis of their permutation importance (less than 1% via jack-knife
tests) were successively dropped.

3.4.2. GDM model

GDM analyses information about multiple species to predict patterns of beta diver-
sity as a measure of biodiversity for regional assessment and planning. We used the
Czekanowski index, also known as the Sørenson index (Czekanowski 1913, Ferrier et al.
2007), to measure pair-wise vascular plant species compositional dissimilarity for over
12,000 species representing 83 families (as at September 2009). The response data com-
prised 875,639 site-pairs, representing a subset of all possible site-pairs randomly selected
from strata defined by biogeographic regions (within and between weighted by the number
of species), sampling over 100,000 sites (Williams et al. 2010). Models were developed
using GDM software (Manion 2009a). Curvilinear transformations of the environmental
variables were tested using three I-spline basis functions (Manion 2009b), defined by the
data distribution: minimum, median and maximum percentiles. Significant contributors to
spatial patterns of biotic dissimilarity were retained if their partial contribution to the per-
cent deviance explained, in the presence of other variables, was initially greater than 0.01 in
variable subgroups, and increased to 0.02 after testing all candidate groups of variables.

3.4.3. Environmental classification

Environmental domain classification has been used as a surrogate for biodiversity patterns
to select representative areas for reserves (Mackey et al. 1988, Belbin 1995). However,
the selection of appropriate environmental variables in a classification often relies on
expert opinion (Williams et al. 2012). The value of an environmental classification can
be maximised by using the variables shown to be important and relevant to the purpose
in associated modelling studies. To demonstrate this approach, we applied the subset of
variables selected for the vascular plant GDM model to generate a 200 group environ-
mental classification using the ALOC (“Allocation”) non-hierarchical clustering algorithm

D
ow

nl
oa

de
d 

by
 [A

us
tra

lia
n 

N
at

io
na

l U
ni

ve
rs

ity
] a

t 1
6:

56
 0

7 
Ja

nu
ar

y 
20

13
 



International Journal of Geographical Information Science 2021

(Belbin 1987, 1993; http://www.patn.com.au) via the spatial portal of the Atlas of Living
Australia (http://spatial.ala.org.au/).

4. Results

4.1. Rationale for environmental variables

Sixty-four environmental variables were evaluated (see framework in Figure 1): 14 water,
13 temperature, 2 radiation, 4 humidity and 4 wind (37 climate); 12 soil, 6 geoscience and
9 terrain (27 substrate) (Table 1). Metadata describing the derivation of these variables can
be viewed online from http://spatial.ala.org.au/layers. We classified most of the climate
variables as level 2 direct gradients (sensu Guisan and Zimmermann (2000); Figure 2) that
are proximally related to the processes of plant growth or development (Tables 2 and 3).
For example, the seasonal minimum and maximum rates of change in day and night
temperatures are considered to be proximally related to plant phenology responses such as
acclimation in photosynthesis during the spring growth flush and frost hardening during
autumn.

Examination of scatter plots highlighted an outlier location for E. delegatensis at
unusually low elevation that was found to be an error. Variables with relatively low
dissimilarity1 (<0.15) showed some close relationships between independently derived
climate and substrate variables that are related through a physical environmental process
(Tables 2 and 3). For example, the hydrological scoring of pedality based on rainfall infil-
tration rates (Lin et al. 1999) was found to have a dissimilarity value of 0.045 with the
minimum monthly rainfall, consistent with the influence of soil moisture on soil mor-
phology (Lin et al. 1999). The terrain attributes for slope, relief and roughness, which
influence water runoff, were also found to be closely related to water variables, particu-
larly the aridity indices (e.g. ARID_MIN dissimilarity ∼0.02). These relationships and the
knowledge of how these variables were derived2 to assist in understanding why some vari-
ables were included and others excluded during the iterative model building process, but
did not predetermine which variables to test.

We identified five proxy subsets, each containing alternative sets of variables that we
judged would not be sensible to combine in the same model (Supplementary Table 1 avail-
able online). We also identified variables that were functionally similar but not directly
substitutable (Supplementary Table 2). For example, we preferred to not include the pre-
cipitation deficit in the same model with rainfall and evaporation (although compare
dissimilarity values in Table 2). However, the aridity index being the ratio of rainfall and
evaporation, we judged to contain additional information that could be usefully combined
with either the precipitation deficit or rainfall and evaporation. For similar reasons, soil
depth and clay percentage and its derivative, soil water-holding capacity (Western and
McKenzie 2004), were tested separately. Soil water-holding capacity was found to be less
effective as a predictor than including both soil depth and percent clay for the GDM mod-
els of vascular plant compositional turnover (Supplementary Table 8), but the reverse was
marginally the case for the MaxEnt models of E. delegatensis (Supplementary Table 5).
The dissimilarity values for soil depth and soil water-holding capacity indicate a close rela-
tionship (0.08), but both are relatively independent of clay content (Table 3). Clay content
in soils influences a wide range of physical processes related to hydrology, mineral status
and fertility (Viscarra Rossel 2011). Because alternative sets of water and soil variables
(Supplementary Table 1) can influence the selection of other variables included in a model,
four different MaxEnt (Section 4.3) and two GDM (Section 4.4) models were compared.
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4.2. Variable selection through model building

Variables were grouped into subsets for successive testing and combined in order of their
perceived importance to the model based on prior experience in continental modelling
(Figure 3): water, energy (mainly temperature), soil, geology and terrain (test order in
Tables 2 and 3). Potentially redundant, correlated variables in each group were identi-
fied and removed via backward elimination, using the respective thresholds for MaxEnt
and GDM, before stage-wise combining with other groups of variables (Figure 3). These
thresholds are specific to the model and were judged reasonable trade-offs between greater
parsimony and reduced explanation.

4.3. MaxEnt model of E. delegatensis

Four alternative MaxEnt models were derived using substitutable subsets of environmental
variables. These models were approximately equivalent in terms of overall performance
and prediction with 13 of the 24 variables in common, albeit with different relative contri-
bution and permutation importance (see Supplementary Tables 3–5). Of the 64 variables
tested, 32 were included in at least one of these models (Table 4 and Supplementary
Table 9). Across all four models, the most important variable was the hottest monthly max-
imum temperature (MAXTI) (Supplementary Table 3). Climatic energy variables (temper-
ature, radiation and humidity) contributed strongly to the scaling of the model (65–70%),
followed by water (12–18%). Substrate variables (∼16%) were approximately equivalent
in importance across the soil, geosciences and terrain subgroups (Supplementary Table 4).
Based on permutation importance however, the contrasts between energy and water groups
declined (Supplementary Table 5). In some cases, terrain variables were approximately
equal or more important than energy variables. Terrain is locally important to climate
and soil formation throughout the range of this species in montane regions of south-
eastern Australia. Prediction maps derived from the four models are reasonably consistent
(Supplementary Figure 1). The mean and standard deviation of the four models provide a
visual depiction of this consistency (Figure 4).

4.4. GDM model of vascular plants compositional turnover

Two models of vascular plant compositional turnover were derived using substitutable
subsets of environmental variables: either precipitation and evaporation or precipitation
deficit (Supplementary Tables 6–8). These models explained about 50% of the deviance

Table 4. Numbers of environmental variables used in four MaxEnt and two GDM models
in the broad groups defined in Table 1 (details in Supplementary Table 9).

Groupa No. of variables MaxEnt GDM Total used

Water 14 9 8 11
Energy 23 9 9 13
Soil 12 6 4 9
Geoscienceb 6 3 4 5
Terrain 9 5 3 6
Total 64 32 28 44

Notes: aGroup follows Table 1.
bGeoscience refers to geology and geophysical variables.
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Figure 4. Ensemble mean probability of presence (>0.1) and standard deviation (>0.04) for the nat-
ural distribution of Eucalyptus delegatensis based on four alternative MaxEnt models shown for the
analysis extent in south eastern Australia (top) and in detail for the region focussed on the Australian
Capital Territory (bottom). White areas for the mean prediction indicate values <0.1 and for the
standard deviation, values <0.04.
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and included up to 28 predictors (Supplementary Table 6). The majority of variables
are in common, varying slightly in their relative contribution to turnover (summed pre-
dictor coefficient values), and with greater contrasts in their partial deviance explained
(Supplementary Tables 7 and 8). Water variables contributed slightly more than temper-
ature variables (37–43% vs. 29–34%), followed in order by geophysical, soil and terrain
variables (Supplementary Table 7).

Additional covariates for sampling adequacy and geographic distance between loca-
tions were included in the GDM analysis (Figure 3). The sampling covariates, which take
into account sampling inadequacies through the number of species and observation records
aggregated at the 0.01◦ grid scale (Williams et al. 2010), reduced the model intercept
and slightly influenced other predictor coefficients (Supplementary Table 8). However,
geographic distance significantly influenced other predictor coefficients (decreases) but
increased the model intercept (Supplementary Table 8). The inclusion of geographic
distance contributed additional information about the response potentially related to
latent variables, evolutionary history, dispersal barriers and non-equilibrium conditions.
Burley et al. (2012) apply more rigorous tests in evaluating the spatial structure of
biodiversity–environment turnover relationships using GDM.

4.5. Environmental classification

The ALOC 200 group environmental domain classification in Figure 5 is based on the
variables used in a GDM model (Model 2, Supplementary Table 8) and coloured according
to similarity in group relationships using the full colour spectrum (Belbin et al. 1983).
The classification distinguishes the environments of eastern Australia (red, mauve and
brown hues) from those of central and western Australia (blue, green and yellow hues).
Colour trends are comparable with the agro-climatic regions defined by Hutchinson et al.
(2005). Although the ecological model weights and transforms each variable according to

Figure 5. An example 200 group environmental domain classification (ALOC algorithm) of the
environmental variables selected and scaled by GDM Model 2 (see Supplementary Information).
Similar colours represent similarity in group relationships (Belbin et al. 1983).
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the relationship with the response in the presence of other variables in the model, the classi-
fication here weights each variable equally. Potential approaches to incorporating non-equal
weighting of variables in this type of classification include using transformations of vari-
ables generated by a GDM model (Ferrier et al. 2007) or assigning weights according to
expert opinion (Williams et al. 2012).

5. Discussion

5.1. The Data model

This work was motivated by the need to provide guidance on which environmental vari-
ables to include in a biodiversity model, given a large number of candidate variables.
Although the data model concept was developed for species distribution modelling (Austin
2002b, 2007, Franklin 2009), it is also applicable to macro-ecological modelling of
species assemblages using methods such as GDM (Ferrier et al. 2007) and to environ-
mental classifications/domains for biodiversity assessment (Belbin 1987, 1993, Mackey
et al. 2008). Our Australian case studies illustrate how to address the general prob-
lem of choosing environmental variables appropriate to a study. Selected variables can
be used in applications requiring a biodiversity surrogate, such as environmental clas-
sification (Figure 5) and analysis of biological survey gaps (Funk et al. 2005). The
approach uses applicable ecological theory to guide the compilation of environmental
information followed by numerical evaluation of relationships examined in the light of
ecological knowledge (Figure 1). Through an expansion of the data model (sensu Austin
2002b), issues of data accuracy, precision, resolution, extent and fitness for purpose can be
systematically addressed.

5.2. Pair-wise dissimilarity – a novel measure of variable relationships

A variant of the Gower metric was developed as an improved measure of the relationship
between pairs of variables. This measure is used by the Atlas of Living Australia (http://
spatial.ala.org.au) to inform users of the relationship between selected and unselected
variables based on their continental extents.

The advantage of the dissimilarity measure over the Pearson’s correlation coefficient is
that non-linear relationships between variables are better accounted for. However, it should
be noted that the usefulness of a set of variables selected through correlation analysis alone
may not necessarily represent a minimum set describing a particular biological response
due to interactions among predictors and their relationship to the response. Further work is
needed to clarify the effectiveness of dissimilarity matrices as a tool alongside an ecological
rationale for a priori selection of environmental variables used in a biodiversity model.

5.3. Approach to variable selection using GDM and MaxEnt

Variable selections in the two case study biodiversity models (GDM and MaxEnt) were
generally consistent, but were affected to some extent by the choice of substitutable vari-
ables which slightly alter the relationship with other included variables. Of the 64 candidate
variables considered, 44 were used in one or more of the four MaxEnt and two GDM mod-
els (Table 4). The majority of the water variables were used, about half of the ‘energy’
variables and a variety of substrate variables (Supplementary Table 9). In each case, the
stage-wise inclusion of selected variables, followed by a repeatable process of elimination,
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ensured that potentially over-fitted models were successively trimmed back. This approach
results in a slightly richer model because it retains important confounding variables that
provide a required adjustment for one or more of the variables remaining in the model
(Bursac et al. 2008).

The threshold used for backward elimination requires a subjective judgement by the
analyst balancing parsimony and explanation. We used a threshold minimum of 1% relative
permutation importance for a variable to be retained in the MaxEnt analyses and 0.02 min-
imum for partial percent deviance explained in the GDM analyses. Removal of marginally
significant variables moderated the potential to over-fit the models (Supplementary Tables 3
and 6). More stringent criteria can be applied to further limit the number of included vari-
ables (Table 4) balanced by the potential to under-fit the model. Our case studies confirm
that a priori decisions about which variables to include/exclude from a model cannot easily
be made without applying a structured testing process.

Overall, a systematic approach to environmental variable evaluation and selection
through model building provides a basis for more explicit linking of the results with eco-
logical theory. Tests with different species or assemblages are needed to clarify which of
these findings, in terms of variables consistently selected, are generic and which are spe-
cific to this case study (Austin 2002a). However, the principles raised here are likely to be
of broader relevance.

5.4. Direct gradient analysis

In order to make the best use of the modelling effort, the results should be evaluated for
rational patterns both as a geographic map of predictions and as response curves in environ-
mental space via direct gradient analysis (Austin et al. 1990). The latter provides opportu-
nities for critique, inference and synthesis in the context of ecological theory. For example,
Williams et al. (2000) developed a simple graphical method to enable the results of a multi-
variate predictive model to be visualised along a single environmental gradient and related
to the ecological continuum concept (Austin and Smith 1989). These results can be used
to propose hypotheses about physiological processes or biotic interactions, determining
the ecotone between co-occurring eucalypts (Battaglia and Williams 1996). For exam-
ple, MaxEnt models of E. delegatensis consistently suggest a minimum temperature limit
around −5◦C possibly due to frost damage, a functional range between 0◦C and 25◦C and
a broad growth optimum around 6–15◦C. This temperature optimum reasonably approxi-
mates the regeneration niche for the species based on a detailed study of the germination
response (Battaglia 1997). Such findings have potential application as hypotheses for niche
parameters in a more mechanistic or process-based model of vegetation growth and produc-
tivity (Coops et al. 2007) and are essential to understanding range-shifts for climate change
forecasting (Kearney and Porter 2009, Fordham et al. 2011, Pagel and Schurr 2012).

6. Conclusions

Although it is not possible to establish a generic set of predictors that will be applicable in
all cases, ecological theory provides the rationale for why particular predictors should be
sought and used. Frameworks such as Figure 2, developed by Guisan and Zimmermann
(2000), are a first step in identifying environmental variables of relevance in vegeta-
tion models. A systematic approach to the selection of environmental variables can be
expected to lead to more robust predictive models and engender increased understanding
of biodiversity–environment relationships.
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Although physiologically based predictors are preferred (e.g. level 1 variables in
Guisan and Zimmermann (2000)) (Figure 2), these are rarely available at high enough
resolution to be effective in all situations. Indirect factors may be justified where they cor-
relate consistently with direct gradients (Austin 2002b). It is important to state the reasons
(hypotheses) for inclusion or exclusion of a predictor on ‘a priori’ or other grounds such as
error in primary data (Austin and Van Niel 2011), inadequate spatial resolution (Thomas
et al. 2002) or confounding complexity (Peterson and Nakazawa 2008).

Advances in spatial analysis and remote detection of environment are generating an
increasing variety of environmental variables that may describe proximal processes rele-
vant to species distributions and so increase the generality of predictive models. However,
a large number of legacy variables coexist with these new variables in environmen-
tal databases, requiring a structured process for deciding which variables to use in a
biodiversity model. Even in relatively data-poor regions, a wide range of direct and indi-
rect environmental variables can be gathered from global data aggregations (see http://
daac.ornl.gov/, http://www.worldclim.org/). For example, elevation from the shuttle radar
topography mission (Rabus et al. 2003) is the foundation of terrain indices (Wilson and
Gallant 2000), and WorldClim (Hijmans et al. 2005) provides analogous climate layers to
those demonstrated here.

Our case studies suggest some key components of a structured approach to selecting
environmental variables that are likely to be of broad relevance for other taxa and regions:
(1) a cost-effective compilation of variables in the context of an explicit ecological frame-
work for the study, knowledge of attribute accuracy and resolution; (2) rigorous evaluation
of non-linear relationships between variables using process knowledge of variable origin
and development, scatter plots and dissimilarity matrices; (3) selection and grouping of
variables based on hypotheses of relative ecological importance and perceived predictor
effectiveness; (4) systematic testing of variables as predictors through model building and
refinement and (5) model critique, inference and synthesis using direct gradient analysis to
evaluate the shape of response curves in the context of ecological theory by presenting the
prediction in both geographic and environmental space.
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