12 research outputs found

    Carfilzomib demonstrates broad anti-tumor activity in pre-clinical non-small cell and small cell lung cancer models

    No full text
    BACKGROUND: Carfilzomib (CFZ) is a proteasome inhibitor that selectively and irreversibly binds to its target and has been approved in the US for treatment of relapsed and refractory multiple myeloma. Phase 1B studies of CFZ reported signals of clinical activity in solid tumors, including small cell lung cancer (SCLC). The aim of this study was to investigate the activity of CFZ in lung cancer models. METHODS: A diverse panel of human lung cancer cell lines and a SHP77 small cell lung cancer xenograft model were used to investigate the anti-tumor activity of CFZ. RESULTS: CFZ treatment inhibited both the constitutive proteasome and the immunoproteasome in lung cancer cell lines. CFZ had marked anti-proliferative activity in A549, H1993, H520, H460, and H1299 non-small cell lung cancer (NSCLC) cell lines, with IC₅₀ values after 96 hour exposure from <1.0 nM to 36 nM. CFZ had more variable effects in the SHP77 and DMS114 SCLC cell lines, with IC₅₀ values at 96 hours from <1 nM to 203 nM. Western blot analysis of CFZ-treated H1993 and SHP77 cells showed cleavage of poly ADP ribose polymerase (PARP) and caspase-3, indicative of apoptosis, and induction of microtubule-associated protein-1 light chain-3B (LC3B), indicative of autophagy. In SHP77 flank xenograft tumors, CFZ monotherapy inhibited tumor growth and prolonged survival, while no additive or synergistic anti-tumor efficacy was observed for CFZ + cisplatin (CDDP). CONCLUSIONS: CFZ demonstrated anti-proliferative activity in lung cancer cell lines in vitro and resulted in a significant survival advantage in mice with SHP77 SCLC xenografts, supporting further pre-clinical and clinical investigations of CFZ in NSCLC and SCLC.This item is part of the UA Faculty Publications collection. For more information this item or other items in the UA Campus Repository, contact the University of Arizona Libraries at [email protected]

    Proteasome composition in immune cells implies special immune‐cell‐specific immunoproteasome function

    No full text
    Immunoproteasomes are a special class of proteasomes, which can be induced with IFN‐γ in an inflammatory environment. In recent years, it became evident that certain immune cell types constitutively express high levels of immunoproteasomes. However, information regarding the basal expression of proteolytically active immunoproteasome subunits in different types of immune cells is still rare. Hence, we quantified standard proteasome subunits (β1c, β2c, β5c) and immunoproteasome subunits (LMP2, MECL‐1, LMP7) in the major murine (CD4+ T cells, CD8+ T cells, CD19+ B cells, CD11c+ dendritic cells, CD49d+ natural killer cells, Ly‐6G+ neutrophils) and human immune cell (CD4+ T cells, CD8+ T cells, CD19+ B cells, CD1c+ CD141+ myeloid dendritic cells, CD56+ natural killer cells, granulocytes) subsets. The different human immune cell types were isolated from peripheral blood and the murine immune cell subsets from spleen. We found that proteasomes of most immune cell subsets mainly consist of immunoproteasome subunits. Our data will serve as a reference and guideline for immunoproteasome expression and imply a special role of immunoproteasomes in immune cells.publishe

    Overcoming bortezomib resistance in human B cells by anti-CD20/rituximab-mediated complement-dependent cytotoxicity and epoxyketone-based irreversible proteasome inhibitors

    No full text
    Abstract Background In clinical and experimental settings, antibody-based anti-CD20/rituximab and small molecule proteasome inhibitor (PI) bortezomib (BTZ) treatment proved effective modalities for B cell depletion in lymphoproliferative disorders as well as autoimmune diseases. However, the chronic nature of these diseases requires either prolonged or re-treatment, often with acquired resistance as a consequence. Methods Here we studied the molecular basis of acquired resistance to BTZ in JY human B lymphoblastic cells following prolonged exposure to this drug and examined possibilities to overcome resistance by next generation PIs and anti-CD20/rituximab-mediated complement-dependent cytotoxicity (CDC). Results Characterization of BTZ-resistant JY/BTZ cells compared to parental JY/WT cells revealed the following features: (a) 10–12 fold resistance to BTZ associated with the acquisition of a mutation in the PSMB5 gene (encoding the constitutive β5 proteasome subunit) introducing an amino acid substitution (Met45Ile) in the BTZ-binding pocket, (b) a significant 2–4 fold increase in the mRNA and protein levels of the constitutive β5 proteasome subunit along with unaltered immunoproteasome expression, (c) full sensitivity to the irreversible epoxyketone-based PIs carfilzomib and (to a lesser extent) the immunoproteasome inhibitor ONX 0914. Finally, in association with impaired ubiquitination and attenuated breakdown of CD20, JY/BTZ cells harbored a net 3-fold increase in CD20 cell surface expression, which was functionally implicated in conferring a significantly increased anti-CD20/rituximab-mediated CDC. Conclusions These results demonstrate that acquired resistance to BTZ in B cells can be overcome by next generation PIs and by anti-CD20/rituximab-induced CDC, thereby paving the way for salvage therapy in BTZ-resistant disease.</p

    Discovery of Highly Selective Inhibitors of the Immunoproteasome Low Molecular Mass Polypeptide 2 (LMP2) Subunit

    No full text
    Building upon the success of bortezomib (VELCADE) and carfilzomib (KYPROLIS), the design of a next generation of inhibitors targeting specific subunits within the immunoproteasome is of interest for the treatment of autoimmune disease. There are three catalytic subunits within the immunoproteasome (low molecular mass polypeptide-7, -2, and multicatalytic endopeptidase complex subunit-1; LMP7, LMP2, and MECL-1), and a campaign was undertaken to design a potent and selective LMP2 inhibitor with sufficient properties to allow for sustained inhibition <i>in vivo</i>. Screening a focused library of epoxyketones revealed a series of potent dipeptides that were optimized to provide the highly selective inhibitor <b>KZR-504</b> (<b>12</b>)
    corecore