1,515 research outputs found

    Experiments on the injection and containment of electron clouds in a toroidal apparatus

    Get PDF
    Injection and containment of electron clouds in azimuthally symmetric, toroidal apparatu

    The spatial distribution of coronae on Venus

    Get PDF
    Coronae on Venus are large, generally circular surface features that have distinctive tectonic, volcanic, and topographic expressions. They range in diameter from less than 200 km to at least 1000 km. Data from the Magellan spacecraft have now allowed complete global mapping of the spatial distribution of coronae on the planet. Unlike impact craters, which show a random (i.e., Poisson) spatial distribution, the distribution of coronae appears to be nonrandom. We investigate the distribution here in detail, and explore its implications in terms of mantle convection and surface modification processes

    Maximal entropy inference of oncogenicity from phosphorylation signaling

    Get PDF
    Point mutations in the phosphorylation domain of the Bcr-Abl fusion oncogene give rise to drug resistance in chronic myelogenous leukemia patients. These mutations alter kinase-mediated signaling function and phenotypic outcome. An information theoretic analysis of the correlation of phosphoproteomic profiling and transformation potency of the oncogene in different mutants is presented. The theory seeks to predict the leukemic transformation potency from the observed signaling by constructing a distribution of maximal entropy of site-specific phosphorylation events. The theory is developed with special reference to systems biology where high throughput measurements are typical. We seek sets of phosphorylation events most contributory to predicting the phenotype by determining the constraints on the signaling system. The relevance of a constraint is measured by how much it reduces the value of the entropy from its global maximum, where all events are equally likely. Application to experimental phospho-proteomics data for kinase inhibitor-resistant mutants shows that there is one dominant constraint and that other constraints are not relevant to a similar extent. This single constraint accounts for much of the correlation of phosphorylation events with the oncogenic potency and thereby usefully predicts the trends in the phenotypic output. An additional constraint possibly accounts for biological fine structure

    Review of Pioneers of Quantum Chemistry

    Get PDF
    There is little doubt that reading books other than textbooks represents an important component of maintaining knowledge for many chemistry educators. Nonetheless, with 30 or more books a year being produced by the ACS Symposium Series alone, how can choices be made about what merits reading time? Certainly, the presentation of current research trends that might influence the chemistry taught in courses represents one metric, but there are many additional worthy books. In terms of potential teaching treasures to be mined, time spent reading history of science presents a strong possibility

    Design, fabrication, and characterization of a compact hierarchical manifold microchannel heat sink array for two-phase cooling

    Get PDF
    High-heat-flux removal is critical for the nextgeneration electronic devices to reliably operate within their temperature limits. A large portion of the thermal resistance in a traditional chip package is caused by thermal resistances at interfaces between the device, heat spreaders, and the heat sink; embedding the heat sink directly into the heat-generating device can eliminate these interface resistances and drastically reduce the overall thermal resistance. Microfluidic cooling within the embedded heat sink improves the heat dissipation, with two-phase operation offering the potential for dissipation of very high heat fluxes while maintaining moderate chip temperatures. To enable multichip stacking and other heterogeneous packaging approaches, it is important to densely integrate all fluid flow paths into the device; volumetric heat dissipation emerges as a performance metric in this new heat sinking paradigm. In this paper, a compact hierarchical manifold microchannel design is presented that utilizes an integrated multilevel manifold distributor to feed coolant to an array of microchannel heat sinks. The flow features in the manifold layers and microchannels are fabricated in silicon wafers using deep reactive-ion etching. The heat source is simulated via Joule heating using thin-film platinum heaters. The on-chip spatial temperature measurements are made using four-wire resistance temperature detectors. The individual manifold layers and the microchannel-bearing wafers are diced and bonded into a sealed stack via thermocompression bonding using gold layers at the mating surfaces. Thermal and hydrodynamic testing is performed by pumping the dielectric fluid HFE-7100 through the device at a known flow rate

    Characterization of Hierarchical Manifold Microchannel Heat Sink Arrays under Simultaneous Background and Hotspot Heating Conditions

    Get PDF
    A hierarchical manifold microchannel heat sink array is fabricated and experimentally characterized for uniform heat flux dissipation over a footprint area of 5 mm x 5 mm. A 3 x 3 array of heat sinks is fabricated into the silicon substrate containing the heaters for direct intrachip cooling, eliminating the thermal resistances typically associated with the attachment of a separate heat sink. The heat sinks are fed in parallel using a hierarchical manifold distributor that delivers flow to each of the heat sinks. Each heat sink contains a bank of high-aspect-ratio microchannels; five different channel geometries with nominal widths of 15 lm and 33 micrometers and nominal depths between 150 micrometers and 470 micrometers are tested. The thermal and hydraulic performance of each heat sink array geometry is evaluated using HFE-7100 as the working fluid, for mass fluxes ranging from 600 kg/m2 s to 2100 kg/m2 s at a constant inlet temperature of 59 degree C. To simulate heat generation from electronics devices, a uniform background heat flux is generated with thin-film serpentine heaters fabricated on the silicon substrate opposite the channels; temperature sensors placed across the substrate provide spatially resolved surface temperature measurements. Experiments are also conducted with simultaneous background and hotspot heat generation; the hotspot heat flux is produced by a discrete 200 micrometers x 200 micrometers hotspot heater. Heat fluxes up to 1020 W/cm2 are dissipated under uniform heating conditions at chip temperatures less than 69 degree C above the fluid inlet and at pressure drops less than 120 kPa. Heat sinks with wider channels yield higher wetted-area heat transfer coefficients, but not necessarily the lowest thermal resistance; for a fixed channel depth, samples with narrower channels have increased total wetted areas owing to the smaller fin pitches. During simultaneous background and hotspot heating conditions, background heat fluxes up to 900 W/cm2 and hotspot fluxes up to 2700 W/cm2 are dissipated. The hotspot temperature increases linearly with hotspot heat flux; at hotspot heat fluxes of 2700 W/cm2, the hotspot experiences a temperature rise of 16 degree C above the average chip temperature

    A Hierarchical Manifold Microchannel Heat Sink Array for High-Heat-Flux Two-Phase Cooling of Electronics

    Get PDF
    High-heat-flux removal is necessary for next-generation microelectronic systems to operate more reliably and efficiently. Extremely high heat removal rates are achieved in this work using a hierarchical manifold microchannel heat sink array. The microchannels are imbedded directly into the heated substrate to reduce the parasitic thermal resistances due to contact and conduction resistances. Discretizing the chip footprint area into multiple smaller heat sink elements with high-aspect-ratio microchannels ensures shortened effective fluid flow lengths. Phase change of high fluid mass fluxes can thus be accommodated in micron-scale channels while keeping pressure drops low compared to traditional, microchannel heat sinks. A thermal test vehicle, with all flow distribution components heterogeneously integrated, is fabricated to demonstrate this enhanced thermal and hydraulic performance. The 5 mm x 5 mm silicon chip area, with resistive heaters and local temperature sensors fabricated directly on the opposite face, is cooled by a 3 x 3 array of microchannel heat sinks that are fed with coolant using a hierarchical manifold distributor. Using the engineered dielectric liquid HFE-7100 as the working fluid, experimental results are presented for channel mass fluxes of 1300, 2100, and 2900 kg/m2 s and channel cross sections with nominal widths of 15 micrometers and nominal depths of 35 micrometers, 150 micrometers, and 300 micrometers. Maximum heat flux dissipation is shown to increase with mass flux and channel depth and the heat sink with 15 micrometers x 300 micrometers channels is shown to dissipate base heat fluxes up to 910 W/cm2 at pressure drops of less than 162 kPa and chip temperature rise under 47 degrees C relative to the fluid inlet temperature
    • …
    corecore