98 research outputs found

    Chemical compositions at Mars landing sites subject to Mars Odyssey Gamma Ray Spectrometer constraints

    Get PDF
    The Mars Odyssey Gamma Ray Spectrometer (GRS) is the first instrument suite to return elemental abundances throughout the midlatitudes of Mars. Concentrations of Cl, Fe, H, K, Si, and Th have been determined to tens of centimeter depths as mass fractions with reasonable confidence. Comparing such data with, or normalizing them to, in situ compositional data is difficult due to issues such as dramatic differences in spatial resolution; difficulties in convolving densities, abundances, and compositions of different regolith components; and a limited number of elements observed in common. We address these concerns in the context of the GRS, using Si at Pathfinder to normalize remote data. In addition, we determine representative in situ compositions for Spirit (both with and without Columbia Hills rocks), Opportunity, and Viking 1 landing sites using GRS-derived H content to hydrate the soil component. Our estimate of the Si mass fraction at Pathfinder, with 13% areal fraction of rocks, is 21%. The composition of major elements, such as Si and Fe, is similar across the four landing sites, while minor elements show significant variability. Areal dominance of soil at all four landing sites causes representative compositions to be driven by the soil component, while proportionally large uncertainties of bulk densities dominate the net uncertainties. GRS compositional determinations compare favorably with the in situ estimates for Cl and K, and for Si by virtue of the normalization. However, the GRS-determined Fe content at each landing site is consistently higher than the in situ value. Copyright 2007 by the American Geophysical Union

    Sequencing three crocodilian genomes to illuminate the evolution of archosaurs and amniotes

    Get PDF
    The International Crocodilian Genomes Working Group (ICGWG) will sequence and assemble the American alligator (Alligator mississippiensis), saltwater crocodile (Crocodylus porosus) and Indian gharial (Gavialis gangeticus) genomes. The status of these projects and our planned analyses are described

    Using enhanced number and brightness to measure protein oligomerization dynamics in live cells

    Get PDF
    Protein dimerization and oligomerization are essential to most cellular functions, yet measurement of the size of these oligomers in live cells, especially when their size changes over time and space, remains a challenge. A commonly used approach for studying protein aggregates in cells is number and brightness (N&B), a fluorescence microscopy method that is capable of measuring the apparent average number of molecules and their oligomerization (brightness) in each pixel from a series of fluorescence microscopy images. We have recently expanded this approach in order to allow resampling of the raw data to resolve the statistical weighting of coexisting species within each pixel. This feature makes enhanced N&B (eN&B) optimal for capturing the temporal aspects of protein oligomerization when a distribution of oligomers shifts toward a larger central size over time. In this protocol, we demonstrate the application of eN&B by quantifying receptor clustering dynamics using electron-multiplying charge-coupled device (EMCCD)-based total internal reflection microscopy (TIRF) imaging. TIRF provides a superior signal-to-noise ratio, but we also provide guidelines for implementing eN&B in confocal microscopes. For each time point, eN&B requires the acquisition of 200 frames, and it takes a few seconds up to 2 min to complete a single time point. We provide an eN&B (and standard N&B) MATLAB software package amenable to any standard confocal or TIRF microscope. The software requires a high-RAM computer (64 Gb) to run and includes a photobleaching detrending algorithm, which allows extension of the live imaging for more than an hour

    The Australasian Resuscitation In Sepsis Evaluation : fluids or vasopressors in emergency department sepsis (ARISE FLUIDS), a multi-centre observational study describing current practice in Australia and New Zealand

    Get PDF
    Objectives: To describe haemodynamic resuscitation practices in ED patients with suspected sepsis and hypotension. Methods: This was a prospective, multicentre, observational study conducted in 70 hospitals in Australia and New Zealand between September 2018 and January 2019. Consecutive adults presenting to the ED during a 30-day period at each site, with suspected sepsis and hypotension (systolic blood pressure <100 mmHg) despite at least 1000 mL fluid resuscitation, were eligible. Data included baseline demographics, clinical and laboratory variables and intravenous fluid volume administered, vasopressor administration at baseline and 6- and 24-h post-enrolment, time to antimicrobial administration, intensive care admission, organ support and in-hospital mortality. Results: A total of 4477 patients were screened and 591 were included with a mean (standard deviation) age of 62 (19) years, Acute Physiology and Chronic Health Evaluation II score 15.2 (6.6) and a median (interquartile range) systolic blood pressure of 94 mmHg (87–100). Median time to first intravenous antimicrobials was 77 min (42–148). A vasopressor infusion was commenced within 24 h in 177 (30.2%) patients, with noradrenaline the most frequently used (n = 138, 78%). A median of 2000 mL (1500–3000) of intravenous fluids was administered prior to commencing vasopressors. The total volume of fluid administered from pre-enrolment to 24 h was 4200 mL (3000–5661), with a range from 1000 to 12 200 mL. Two hundred and eighteen patients (37.1%) were admitted to an intensive care unit. Overall in-hospital mortality was 6.2% (95% confidence interval 4.4–8.5%). Conclusion: Current resuscitation practice in patients with sepsis and hypotension varies widely and occupies the spectrum between a restricted volume/earlier vasopressor and liberal fluid/later vasopressor strategy

    The evolution of non-small cell lung cancer metastases in TRACERx

    Get PDF
    Metastatic disease is responsible for the majority of cancer-related deaths1. We report the longitudinal evolutionary analysis of 126 non-small cell lung cancer (NSCLC) tumours from 421 prospectively recruited patients in TRACERx who developed metastatic disease, compared with a control cohort of 144 non-metastatic tumours. In 25% of cases, metastases diverged early, before the last clonal sweep in the primary tumour, and early divergence was enriched for patients who were smokers at the time of initial diagnosis. Simulations suggested that early metastatic divergence more frequently occurred at smaller tumour diameters (less than 8 mm). Single-region primary tumour sampling resulted in 83% of late divergence cases being misclassified as early, highlighting the importance of extensive primary tumour sampling. Polyclonal dissemination, which was associated with extrathoracic disease recurrence, was found in 32% of cases. Primary lymph node disease contributed to metastatic relapse in less than 20% of cases, representing a hallmark of metastatic potential rather than a route to subsequent recurrences/disease progression. Metastasis-seeding subclones exhibited subclonal expansions within primary tumours, probably reflecting positive selection. Our findings highlight the importance of selection in metastatic clone evolution within untreated primary tumours, the distinction between monoclonal versus polyclonal seeding in dictating site of recurrence, the limitations of current radiological screening approaches for early diverging tumours and the need to develop strategies to target metastasis-seeding subclones before relaps
    • …
    corecore