18 research outputs found

    A synthesis of European seahorse taxonomy, population structure, and habitat use as a basis for assessment, monitoring and conservation

    Get PDF
    Accurate taxonomy, population demography, and habitat descriptors inform species threat assessments and the design of effective conservation measures. Here we combine published studies with new genetic, morphological and habitat data that were collected from seahorse populations located along the European and North African coastlines to help inform management decisions for European seahorses. This study confirms the presence of only two native seahorse species (Hippocampus guttulatus and H. hippocampus) across Europe, with sporadic occurrence of non-native seahorse species in European waters. For the two native species, our findings demonstrate that highly variable morphological characteristics, such as size and presence or number of cirri, are unreliable for distinguishing species. Both species exhibit sex dimorphism with females being significantly larger. Across its range, H. guttulatus were larger and found at higher densities in cooler waters, and individuals in the Black Sea were significantly smaller than in other populations. H. hippocampus were significantly larger in Senegal. Hippocampus guttulatus tends to have higher density populations than H. hippocampus when they occur sympatrically. Although these species are often associated with seagrass beds, data show both species inhabit a wide variety of shallow habitats and use a mixture of holdfasts. We suggest an international mosaic of protected areas focused on multiple habitat types as the first step to successful assessment, monitoring and conservation management of these Data Deficient speciespublishersversionPeer reviewe

    Data from: Putatively adaptive genetic variation in the giant California sea cucumber (Parastichopus californicus) as revealed by environmental association analysis of restriction‐site associated DNA sequencing data

    No full text
    Understanding the spatial scale of local adaptation and the factors associated with adaptive diversity are important objectives for ecology and evolutionary biology, and have significant implications for effective conservation and management of wild populations and natural resources. In this study, we used an environmental association analysis (EAA) to identify important bioclimatic variables correlated with putatively adaptive genetic variation in a benthic marine invertebrate – the giant California sea cucumber (Parastichopus californicus) – spanning coastal British Columbia and southeastern Alaska. We used a redundancy analysis (RDA) with 3,699 SNPs obtained using RAD sequencing to detect candidate markers associated with 11 bioclimatic variables, including sea bottom and surface conditions, across two spatial scales (entire study area and within sub-regions). At the broadest scale, RDA revealed 59 candidate SNPs, 86% of which were associated with mean bottom temperature. Similar patterns were identified when population structure was accounted for. Additive polygenic scores, which provide a measure of the cumulative signal across all candidate SNPs, were strongly correlated with mean bottom temperature, consistent with spatially varying selection across a thermal gradient. At a finer scale, 23 candidate SNPs were detected, primarily associated with surface salinity (26%) and bottom current velocity (17%). Our findings suggest that environmental variables may play a role as drivers of spatially varying selection for P. californicus. These results provide context for future studies to evaluate the genetic basis of local adaptation in P. californicus and help inform the relevant scales and environmental variables for in situ field studies of putative adaptive variation in marine invertebrates

    Data from: The structure and distribution of benthic communities on a shallow seamount (Cobb Seamount, Northeast Pacific Ocean)

    No full text
    Partially owing to their isolation and remote distribution, research on seamounts is still in its infancy, with few comprehensive datasets and empirical evidence supporting or refuting prevailing ecological paradigms. As anthropogenic activity in the high seas increases, so does the need for better understanding of seamount ecosystems and factors that influence the distribution of sensitive benthic communities. This study used quantitative community analyses to detail the structure, diversity, and distribution of benthic mega-epifauna communities on Cobb Seamount, a shallow seamount in the Northeast Pacific Ocean. Underwater vehicles were used to visually survey the benthos and seafloor in ~1600 images (~5 m2 in size) between 34 and 1154 m depth. The analyses of 74 taxa from 11 phyla resulted in the identification of nine communities. Each community was typified by taxa considered to provide biological structure and/or be a primary producer. The majority of the community-defining taxa were either cold-water corals, sponges, or algae. Communities were generally distributed as bands encircling the seamount, and depth was consistently shown to be the strongest environmental proxy of the community-structuring processes. The remaining variability in community structure was partially explained by substrate type, rugosity, and slope. The study used environmental metrics, derived from ship-based multibeam bathymetry, to model the distribution of communities on the seamount. This model was successfully applied to map the distribution of communities on a 220 km2 region of Cobb Seamount. The results of the study support the paradigms that seamounts are diversity 'hotspots', that the majority of seamount communities are at risk to disturbance from bottom fishing, and that seamounts are refugia for biota, while refuting the idea that seamounts have high endemism

    A conservation trade-off? Interspecific differences in seahorse responses to experimental changes in fishing effort

    No full text
    1. A 2-year experimental seining programme and underwater visual censuses were undertaken to quantify the direct effects of active demersal fishing on the population structure and relative abundance of two sympatric seahorse species of conservation concern: the European long-snouted seahorse, Hippocampus guttulatus Cuvier 1829 and the short-snouted seahorse, Hippocampus hippocampus L. The influence of habitat preference on population-level responses to changes in habitat structure following a reduction in fishing effort was also investigated. 2. It was predicted that the benthic habitat would be more structurally complex after fishing ceased and that seahorse densities would increase in response to reduced fishing mortality. Furthermore, it was predicted that the magnitude of the increase in density would be greater for H. guttulatus than for H. hippocampus, because the former species prefers complex vegetated habitats while the latter species uses sparsely vegetated habitats. 3. As predicted, the amount of habitat cover increased significantly when seining ceased, primarily through increases in the abundance of drifting macroalgae and unattached invertebrates. Despite similarities in life histories, the two seahorse species responded differently in terms of magnitude and direction to reduced fishing effort: the abundance of H. guttulatus increased significantly while H. hippocampus decreased in abundance. 4. Results suggest that active demersal fishing may influence the magnitude and direction of the responses of benthic marine fishes to exploitation through its impacts on habitat structure. An increase in habitat cover appeared to favour higher densities of H. guttulatus when seining effort was reduced. By contrast, repeated seining, which maintained less complex habitats, appeared to favour greater abundances of H. hippocampus. 5. Given differences in habitat preference among benthic marine fishes subject to incidental capture in fisheries, simultaneous attempts to manage populations of sympatric species may require complementary strategies that support the persistence of diverse habitat types. Copyright (c) 2006 John Wiley & Sons, Ltd

    The environmental data (depth, slope, and small- and large-scale ACR rugosity) at the image locations for each of the nine Cobb Seamount communities.

    No full text
    <p>The boxes represent the inter-quartile interval, circles represent outliers, stars represent extreme outliers, and horizontal lines represent the median. The superscript letters represent the output of the Mann-Whitney U tests, where community locations that are significantly different to each other do not share a common letter.</p

    Outputs from the Random Forest modelling.

    No full text
    <p>(A) The predicted distributions of the nine communities, plus the hypothesized <i>Lophelia pertusa</i> bioherm community, and (B) the degree of model uncertainty. Model resolution is 20 by 20 m, thin black lines represent 100 m depth contours, the thick black line represents 1200 m (the approximate depth limit of the image surveys). (A) Each community is represented by a different colour, (B) white circles represent image locations, hatching represents the depth gap not surveyed (211 to 472 m), and dark gray shading represents extrapolated areas (i.e., areas where one or more environmental variable is beyond the sampled range).</p
    corecore