38 research outputs found

    Reactive transport processes in artificially recharged aquifers

    Get PDF
    In der vorliegenden Dissertation sollten die hydrogeochemischen Prozesse herausgearbeitet werden, die für die Wasserqualitätsänderung während eines ASR Experiments in Bolivar, Südaustralien und während der Versickerung in einem künstlichen Grundwasseranreicherungsbecken in Berlin von Bedeutung waren. Reaktive Stofftransportmodellierung des ASR Experiments in Bolivar, Südaustralien zeigte, dass die hydrochemischen Veränderungen in der direkten Umgebung des Injektionsbrunnens während der Speicherphase nur durch rapide Änderungen der Sauerstoff- und Nitrat reduzierenden Bakterienmasse erklärt werden können. Die hydrochemischen Veränderungen in größerer Distanz zum Injektionsbrunnen wurden überwiegend durch Ionenaustauschprozesse und Kalzitlösung verursacht. Geochemische und hydraulische Messungen unter einem Sickerbecken in Berlin zeigten, dass die beobachteten geochemischen Änderungen im Sickerwasser mit den periodisch auftretenden wassergesättigten/wasserungesättigen Bedingungen unter dem Becken einhergehen. Während der ungesättigten Periode wird Luft unter das Becken gezogen und führt zur plötzlichen Reoxidierung von bereits in der gesättigten Periode gebildeten Eisensulfiden und zur beschleunigten Mineralisation von sedimentärem organischem Kohlenstoff. Reaktive Stofftransportmodellierung auf größerer Skale zeigte, dass allein die saisonalen Temperaturunterschiede im Infiltrationswasser für die beobachtete zeitliche und räumliche Dynamik der Redoxzonen im weiteren Abstrom des Sickerbeckens verantwortlich sind. Das Abbauverhalten der Arzneimittelsubstanz Phenazon hängt ausschließlich von der Verfügbarkeit von gelöstem Sauerstoff und damit indirekt von der Wassertemperatur im Aquifer ab. In der vorliegenden Arbeit wird deutlich, dass ein adäquates Verständnis der wasserqualitätsändernden Prozesse in künstlichen Anreicherungsystemen nur dann erreicht werden kann wenn Strömung, Transport und reaktive Prozesse, im Feld als auch in der Modellierung, simultan betrachtet werden.In this thesis, three major studies were carried out in order to understand the key factors controlling the water quality changes that occurred during a reclaimed water Aquifer Storage and Recovery (ASR) experiment at Bolivar, South Australia and during ponded infiltration in Berlin, Germany. Multi-component reactive transport modelling of the ASR experiment suggested that during the storage phase, dynamic changes in bacterial mass have a significant influence on the local geochemistry in the vicinity of the injection well. Water quality changes further away from the injection well were mainly driven by ion exchange and calcite dissolution. Geochemical and hydraulic measurements below an artificial recharge pond in Berlin, Germany, showed that the observed dynamic changes of the hydrochemistry within the seepage water are strongly linked to the periodic saturated/unsaturated hydraulic conditions below the pond. During unsaturated conditions, atmospheric oxygen penetrates from the pond margins to the centre below the pond, leading to (i) a sudden re-oxidation of sulphide minerals that have formed previously during saturated conditions and (ii) an enhanced mineralisation of sedimentary particulate organic carbon. Reactive transport modelling showed that at larger scale, seasonal temperature changes of the infiltration water are the key control for the observed temporal and spatial redox dynamics further downstream the recharge pond. Moreover, the degradation behaviour of the pharmaceutically residue phenazone solely depends on the availability of dissolved oxygen, and thus indirectly on the water temperature within the aquifer. Overall this thesis shows that a sound understanding and analysis of the key processes affecting the water quality changes during artificial recharge of groundwater could only be achieved when flow, transport and reactive processes are considered simultaneously, both in the field and during modelling

    Groundwater ages, recharge conditions and hydrochemical evolution of a barrier island freshwater lens (Spiekeroog, Northern Germany)

    Get PDF
    Freshwater lenses below barrier islands are dynamic systems affected by changes in morphodynamic patterns, groundwater recharge and discharge. They are also vulnerable to pollution and overabstraction of groundwater. Basic knowledge on hydrogeological and hydrochemical processes of freshwater lenses is important to ensure a sustainable water management, especially when taking into account possible effects of climate change. This is the first study which gives a compact overview on the age distribution, recharge conditions and hydrochemical evolution of a barrier island freshwater lens in the southern North Sea (Spiekeroog Island, Eastfrisian Wadden Sea). Two ground- and surface water sampling campaigns were carried out in May and July 2011, supplemented by monthly precipitation sampling from July to October. 3H–3He ages, stable oxygen and hydrogen isotopes and major ion concentrations show that the freshwater lens reaches a depth of 44 mbsl, where an aquitard constrains further expansion in vertical direction. Groundwater ages are increasing from 4.4 years in 12 mbsl up to >70 years at the freshwater– saltwater interface. Stable isotope signatures reflect average local precipitation signatures. An annual recharge rate of 300–400 mm was calculated with 3H–3He data. Freshwater is primarily of Na–Ca–Mg–HCO3– and Ca–Na–HCO3–Cl type, while lowly mineralized precipitation and saltwater are of Na–Cl types. A trend towards heavier stable isotope signatures and higher electric conductivities in the shallower, younger groundwater within the freshwater lens may indicate increasing atmospheric temperatures in the last 30 years

    Rare earth element behaviour in seawater under the influence of organic matter cycling during a phytoplankton spring bloom – A mesocosm study

    Get PDF
    Rare earth elements (REEs) are used as powerful proxies for a variety of oceanic processes. The understanding of their biogeochemical behaviour in the marine environment is therefore essential. While the influence of OM-cycling on REE patterns in seawater is considered as insignificant, it has been shown that algae and bacteria provide good sorption surfaces for REEs and that components of the dissolved OM pool are able to complex REEs, thus potentially altering their behaviour. To investigate the impact of bio-associated processes on REEs in the bio-productive marine environment, we conducted an indoor mesocosm experiment that mimicked a phytoplankton spring bloom in the neritic coastal North Sea. The incubation period of 38 days covered two distinct phytoplankton bloom phases (diatoms followed by Phaeocystis sp.) and an interjacent bacterioplankton maximum. All dissolved REEs (dREEs) except samarium showed similar temporal concentration patterns, which were closely connected to the bloom succession. The concentration patterns were shaped by the ‘phytoplankton-shuttle’, which summarizes adsorption processes on phytoplankton-derived particulate OM (POM) and resulted in decreasing dREE concentrations alongside chlorophyll-a and POM maxima. The ‘heterotrophic-shuttle’ resulted in increasing dREE concentrations likely linked to heterotrophically mediated regeneration of POM and associated desorption processes. The effect of these processes on dREEs resulted in enhanced fractionation of light REEs (LREEs) relative to heavy REEs (HREEs) during adsorption processes and decreased fractionation as a result of desorption. At times of high dissolved organic carbon (DOC) concentrations, we observed a stabilization of especially dHREEs likely in organic complexes. To test the potential influence of DOC on dREEs, we used a PHREEQC model approach that revealed dREE complexation with components of the DOC pool and an increase in complexation with atomic mass of the REEs. That is, at high DOC concentrations OM-dREE complexation leads to an effective and preferential buffering of dHREE against adsorption. Our findings reveal that OM-cycling influences concentration patterns of dREEs via ad- and desorption processes as well as organic complexation with parts of the OM pool, suggesting these processes can have a significant impact on dREE concentrations in the natural marine environment under high OM conditions

    The drivers of biogeochemistry in beach ecosystems: A cross-shore transect from the dunes to the low water line

    Get PDF
    This study addresses key processes in high-energy beach systems using an interdisciplinary approach. We assess spatial variations in subsurface pore water residence times, salinity, organic matter (OM) availability, and redox conditions and their effects on nutrient cycles as well as on microbial community patterns and microphytobenthos growth. At the study site on Spiekeroog Island, southern North Sea, beach hydrology is characterized by the classical zonation with an upper saline plume (USP), a saltwater wedge, and a freshwater discharge tube in between. Sediment and pore water samples were taken along a cross-shore transect from the dunes to the low water line reaching sediment depths down to 5 m below sediment surface. Spatial variations in pore water residence time, salinity, and organic matter availability lead to steep redox and nutrient gradients. Vertical and horizontal differences in the microbial community indicate the influence of these gradients and salinity on the community structure. Modeled seawater flux through the USP and freshwater flux through the tube are on average 2.8 and 0.75 m3 per day and meter of shoreline, respectively. Furthermore, ridge sediments at the lower beach discharge seawater at rates of 0.5 and 1.0 m3 per day and meter of shoreline towards the runnel and seaside, respectively. Applying seawater and freshwater fluxes and representative nutrient concentrations for the discharge zones, nutrient fluxes to adjacent nearshore waters are 117 mmol NH4+, 55 mmol PO43 − and 575 mmol Si(OH)4 per day and meter of shoreline. We propose that this nutrient efflux triggers growth of microphytobenthos on sediment surfaces of the discharge zone. A first comparison of nutrient discharge rates of the beach site with a nearby sandy backbarrier tidal flat margin indicates that the beach system might be of less importance in supplying recycled nutrients to nearshore waters than the backbarrier tidal flat area

    The impact of morphodynamics and storm floods on pore water flow and transport in the subterranean estuary

    No full text
    In this study, we demonstrate by numerical density-dependent groundwater flow and transport modelling how transient beach morphology and regular storm floods that are typical for high-energy beaches change this classical picture of a subterranean estuary. The model results suggest that the variable beach morphology and seasonal storm floods lead to strong spatiotemporal variability of hydrodynamic and transport patterns reaching several 10th of meters into the subsurface, thereby distorting the classical salinity stratification. We believe that these findings are particularly relevant for sandy high-energy beaches which are commonly present at global coastlines

    Transient groundwater chemistry near a river: Effects on U(VI) transport in laboratory column experiments

    Get PDF
    In the 300 Area of a U(VI)-contaminated aquifer at Hanford, Washington, USA, inorganic carbon and major cations, which have large impacts on U(VI) transport, change on an hourly and seasonal basis near the Columbia River. Batch and column experiments were conducted to investigate the factors controlling U(VI) adsorption/desorption by changing chemical conditions over time. Low alkalinity and low Ca concentrations (Columbia River water) enhanced adsorption and reduced aqueous concentrations. Conversely, high alkalinity and high Ca concentrations (Hanford groundwater) reduced adsorption and increased aqueous concentrations of U(VI). An equilibrium surface complexation model calibrated using laboratory batch experiments accounted for the decrease in U(VI) adsorption observed with increasing (bi)carbonate concentrations and other aqueous chemical conditions. In the column experiment, alternating pulses of river and groundwater caused swings in aqueous U(VI) concentration. A multispecies multirate surface complexation reactive transport model simulated most of the major U(VI) changes in two column experiments. The modeling results also indicated that U(VI) transport in the studied sediment could be simulated by using a single kinetic rate without loss of accuracy in the simulations. Moreover, the capability of the model to predict U(VI) transport in Hanford groundwater under transient chemical conditions depends significantly on the knowledge of real-time change of local groundwater chemistry

    Simulating adsorption of U(VI) under transient groundwater flow and hydrochemistry: Physical versus chemical nonequilibrium model

    Get PDF
    Coupled intragrain diffusional mass transfer and nonlinear surface complexation processes play an important role in the transport behavior of U(VI) in contaminated aquifers. Two alternative model approaches for simulating these coupled processes were analyzed and compared: (1) the physical nonequilibrium approach that explicitly accounts for aqueous speciation and instantaneous surface complexation reactions in the intragrain regions and approximates the diffusive mass exchange between the immobile intragrain pore water and the advective pore water as multirate first-order mass transfer and (2) the chemical nonequilibrium approach that approximates the diffusion-limited intragrain surface complexation reactions by a set of multiple first-order surface complexation reaction kinetics, thereby eliminating the explicit treatment of aqueous speciation in the intragrain pore water. A model comparison has been carried out for column and field scale scenarios, representing the highly transient hydrological and geochemical conditions in the U(VI)-contaminated aquifer at the Hanford 300A site, Washington, USA. It was found that the response of U(VI) mass transfer behavior to hydrogeochemically induced changes in U(VI) adsorption strength was more pronounced in the physical than in the chemical nonequilibrium model. The magnitude of the differences in model behavior depended particularly on the degree of disequilibrium between the advective and immobile phase U(VI) concentrations. While a clear difference in U(VI) transport behavior between the two models was noticeable for the column-scale scenarios, only minor differences were found for the Hanford 300A field scale scenarios, where the model-generated disequilibrium conditions were less pronounced as a result of frequent groundwater flow reversals

    A reactive transport benchmark on modeling biogenic uraninite re-oxidation by Fe(III)-(hydr)oxides

    No full text
    A reactive transport benchmark on uranium (U) bioreduction and concomitant reoxidation has been developed based on the multicomponent biogeochemical reaction network presented by Spycher et al. (Geochim Cosmochim Acta 75:4426-4440, 2011). The benchmark problem consists of a model inter-comparison starting with the numerical simulations of the original batch experiments of Sani et al. (Geochim Cosmochim Acta 68:2639-2648, 2004). The batch model is then extended to 1D and 2D reactive transport models, designed to evaluate the model results for the key biogeochemical reaction processes and their coupling with physical transport. Simulations are performed with four different reactive transport simulators: PHREEQC, PHT3D, MIN3P, and TOUGHREACT. All of the simulators are able to capture the complex biogeochemical reaction kinetics and the coupling between transport and kinetic reaction network successfully in the same manner. For the dispersion-free variant of the problem, a 1D-reference solution was obtained by PHREEQC, which is not affected by numerical dispersion. PHT3D using the sequential non-iterative approach (SNIA) with an explicit TVD scheme and MIN3P using the global implicit method (GIM) with an implicit van Leer flux limiter provided the closest approximation to the PHREEQC results. Since the spatial weighting schemes for the advection term and numerical dispersion played an important role for the accuracy of the results, the simulators were further compared using different solution schemes. When all codes used the same spatial weighting scheme with finite-difference approximation, the simulation results agreed very well among all four codes. The model intercomparison for the 2D-case demonstrated a high level of sensitivity to the mixing of different waters at the dispersive front. Therefore this benchmark problem is well-suited to assess code performance for mixing-controlled reactive transport models in conjunction with complex reaction kinetics
    corecore