493 research outputs found

    Quaternary fluctuations in the Northern Hemisphere trade winds and westerlies

    Full text link
    The mass accumulation rate and grain size of the total colian component isolated from pelagic sediment in two North Pacific cores, piston core KK75-02 under the prevailing westerlies and Deep-Sea Drilling Project Site 503 beneath the trade winds, have been used to evaluate changes in the intensity of atmospheric circulation and source-area aridity over the past 700,000 yr. The eolian grain size, a direct indicator of wind intensity, fluctuates at periodicities similar to those calculated for the earth's orbital parameters of precession, obliquity, and eccentricity. Both sites display greater variability in wind intensity prior to 250,000 yr ago. Eolian accumulation rates, an indicator of source-area aridity, fluctuate at periodicities similar to those of the glacial-interglacial cycles. Lower eolian accumulation rates during colder (glacial) times most likely reflect increased glacial-age humidity at central Asian and Central American source areas.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/25580/1/0000124.pd

    Late Cenozoic changes in atmospheric circulation deduced from North Pacific eolian sediments

    Full text link
    Isolation and analysis of the eolian component of late Cenozoic pelagic sediments from the North Pacific provides direct information concerning changes in atmospheric circulation. A 50% increase in intensity of both the prevailing westerlies and the tradewinds coincides with increasing pole-to-equator temperature gradients resulting from the onset of northern hemisphere glaciation. At the same time, the mass flux of dust from continents to the North Pacific increased by a factor of 4.5, apparently reflecting significantly increased continental aridity associated with the late Cenozoic glacial ages.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/23873/1/0000112.pd

    Late cretaceous history of eolian deposition in the mid-pacific mountains, central North Pacific Ocean

    Full text link
    Eolian dust preserved in deep-sea sediment can provide a direct historical record of global atmospheric circulation. Data from a reasonably complete Upper Cretaceous section of pelagic sediments recovered at DSDP Site 463 in the central North Pacific provides a good record of eolian activity during the time period between about 112 and 66 m.y. ago. We have isolated the eolian component from these sediments, determined its mass accumulation rate and combined these data with the mineralogy of the inorganic fraction determined by others to construct a record of eolian deposition. Volcanic input is significant during Aptian-Albian and Maastrichtian times, otherwise continentally derived minerals dominate. Mass accumulation rates of the continental eolian component range from over 500 mg/cm2/103yr during the late Albian to a low of 5 mg/cm2/103yr during Coniacian time. (For comparison, the upper Miocene to Pleistocene rate averages about 20 mg/cm2/103yr.) The temporal pattern of Late Cretaceous eolian accumulation of Site 463 generally matches known changes in sea level, suggesting that source availability is the dominant control of eolian sedimentation during that time.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/24203/1/0000462.pd

    Human Genome-Wide RNAi Screen for Host Factors That Modulate Intracellular Salmonella Growth

    Get PDF
    Salmonella enterica is a bacterial pathogen of humans that can proliferate within epithelial cells as well as professional phagocytes of the immune system. While much has been learned about the microbial genes that influence the infectious process through decades of intensive research, relatively little is known about the host factors that affect infection. We performed a genome-wide siRNA screen to identify host genes that Salmonella enterica serovar Typhimurium (S. typhimurium) utilizes to facilitate growth within human epithelial cells. In this screen, with siRNAs targeting every predicted gene in the human genome, we identified 252 new human-host-susceptibility factors (HSFs) for S. typhimurium. We also identified 39 genes whose silencing results in increased intracellular growth of S. typhimurium. The HSFs identified are regulated most centrally by NFκB and associate with each other through an extremely dense network of interactions that center around a group of kinases. Most genes identified were not previously appreciated as playing roles in the intracellular lifecycle of S. enterica. Numerous HSFs identified with interesting characteristics that could play plausible roles in mediating intracellular microbial growth are discussed. Importantly, this study reveals significant overlap between the host network that supports S. typhimurium growth within human epithelial cells and the one that promotes the growth of Mycobacterium tuberculosis within human macrophages. In addition to providing much new information about the molecular mechanisms underlying S. enterica-host cell interplay, all 252 HSFs identified are candidates for new anti-microbial targets for controlling S. enterica infections, and some may provide broad-spectrum anti-microbial activity

    Joint analysis of the energy spectrum of ultra-high-energy cosmic rays measured at the Pierre Auger Observatory and the Telescope Array

    Get PDF
    The measurement of the energy spectrum of ultra-high-energy cosmic rays (UHECRs) is of crucial importance to clarify their origin and acceleration mechanisms. The Pierre Auger Observatory in Argentina and the Telescope Array (TA) in the US have reported their measurements of UHECR energy spectra observed in the southern and northern hemisphere, respectively. The region of the sky accessible to both Observatories ([−15,+24] degrees in declination) can be used to cross-calibrate the two spectra. The Auger-TA energy spectrum working group was organized in 2012 and has been working to understand the uncertainties in energy scale in both experiments, their systematic differences, and differences in the shape of the spectra. In previous works, we reported that there was an overall agreement of the energy spectra measured by the two observatories below 10 EeV while at higher energies, a remaining significant difference was observed in the common declination band. We revisit this issue to understand its origin by examining the systematic uncertainties, statistical effects, and other possibilities. We will also discuss the differences in the spectra in different declination bands and a new feature in the spectrum recently reported by the Auger Collaboration

    The UHECR dipole and quadrupole in the latest data from the original Auger and TA surface detectors

    Get PDF
    The sources of ultra-high-energy cosmic rays are still unknown, but assuming standard physics, they are expected to lie within a few hundred megaparsecs from us. Indeed, over cosmological distances cosmic rays lose energy to interactions with background photons, at a rate depending on their mass number and energy and properties of photonuclear interactions and photon backgrounds. The universe is not homogeneous at such scales, hence the distribution of the arrival directions of cosmic rays is expected to reflect the inhomogeneities in the distribution of galaxies; the shorter the energy loss lengths, the stronger the expected anisotropies. Galactic and intergalactic magnetic fields can blur and distort the picture, but the magnitudes of the largest-scale anisotropies, namely the dipole and quadrupole moments, are the most robust to their effects. Measuring them with no bias regardless of any higher-order multipoles is not possible except with full-sky coverage. In this work, we achieve this in three energy ranges (approximately 8–16 EeV, 16–32 EeV, and 32–∞ EeV) by combining surface-detector data collected at the Pierre Auger Observatory until 2020 and at the Telescope Array (TA) until 2019, before the completion of the upgrades of the arrays with new scintillator detectors. We find that the full-sky coverage achieved by combining Auger and TA data reduces the uncertainties on the north-south components of the dipole and quadrupole in half compared to Auger-only results

    The UHECR dipole and quadrupole in the latest data from the original Auger and TA surface detectors

    Get PDF
    The sources of ultra-high-energy cosmic rays are still unknown, but assuming standard physics, they are expected to lie within a few hundred megaparsecs from us. Indeed, over cosmological distances cosmic rays lose energy to interactions with background photons, at a rate depending on their mass number and energy and properties of photonuclear interactions and photon backgrounds. The universe is not homogeneous at such scales, hence the distribution of the arrival directions of cosmic rays is expected to reflect the inhomogeneities in the distribution of galaxies; the shorter the energy loss lengths, the stronger the expected anisotropies. Galactic and intergalactic magnetic fields can blur and distort the picture, but the magnitudes of the largest-scale anisotropies, namely the dipole and quadrupole moments, are the most robust to their effects. Measuring them with no bias regardless of any higher-order multipoles is not possible except with full-sky coverage. In this work, we achieve this in three energy ranges (approximately 8--16 EeV, 16--32 EeV, and 32--∞ EeV) by combining surface-detector data collected at the Pierre Auger Observatory until 2020 and at the Telescope Array (TA) until 2019, before the completion of the upgrades of the arrays with new scintillator detectors. We find that the full-sky coverage achieved by combining Auger and TA data reduces the uncertainties on the north-south components of the dipole and quadrupole in half compared to Auger-only results

    UHECR arrival directions in the latest data from the original Auger and TA surface detectors and nearby galaxies

    Get PDF
    The distribution of ultra-high-energy cosmic-ray arrival directions appears to be nearly isotropic except for a dipole moment of order 6×(E/10 EeV)6 \times (E/10~\mathrm{EeV}) per cent. Nonetheless, at the highest energies, as the number of possible candidate sources within the propagation horizon and the magnetic deflections both shrink, smaller-scale anisotropies might be expected to emerge. On the other hand, the flux suppression reduces the statistics available for searching for such anisotropies. In this work, we consider two different lists of candidate sources: a sample of nearby starburst galaxies and the 2MRS catalog tracing stellar mass within 250 Mpc. We combine surface-detector data collected at the Pierre Auger Observatory until 2020 and the Telescope Array until 2019, and use them to test models in which UHECRs comprise an isotropic background and a foreground originating from the candidate sources and randomly deflected by magnetic fields. The free parameters of these models are the energy threshold, the signal fraction, and the search angular scale. We find a correlation between the arrival directions of 11.8%3.1%+5.0%11.8\%_{-3.1\%}^{+5.0\%} of cosmic rays detected with E38 EeVE \ge 38~\mathrm{EeV} by Auger or with E49 EeVE \gtrsim 49~\mathrm{EeV} by TA and the position of nearby starburst galaxies on a 15.53.2+5.3{15.5^\circ}_{-3.2^\circ}^{+5.3^\circ} angular scale, with a 4.2σ post-trial significance, as well as a weaker correlation with the overall galaxy distribution

    The UHECR dipole and quadrupole in the latest data from the original Auger and TA surface detectors

    Get PDF
    The sources of ultra-high-energy cosmic rays are still unknown, but assuming standard physics, they are expected to lie within a few hundred megaparsecs from us. Indeed, over cosmological distances cosmic rays lose energy to interactions with background photons, at a rate depending on their mass number and energy and properties of photonuclear interactions and photon backgrounds. The universe is not homogeneous at such scales, hence the distribution of the arrival directions of cosmic rays is expected to reflect the inhomogeneities in the distribution of galaxies; the shorter the energy loss lengths, the stronger the expected anisotropies. Galactic and intergalactic magnetic fields can blur and distort the picture, but the magnitudes of the largest-scale anisotropies, namely the dipole and quadrupole moments, are the most robust to their effects. Measuring them with no bias regardless of any higher-order multipoles is not possible except with full-sky coverage. In this work, we achieve this in three energy ranges (approximately 8--16 EeV, 16--32 EeV, and 32--∞ EeV) by combining surface-detector data collected at the Pierre Auger Observatory until 2020 and at the Telescope Array (TA) until 2019, before the completion of the upgrades of the arrays with new scintillator detectors. We find that the full-sky coverage achieved by combining Auger and TA data reduces the uncertainties on the north-south components of the dipole and quadrupole in half compared to Auger-only results
    corecore