8 research outputs found

    Molecular Techniques Reveal Wide Phyletic Diversity of Heterotrophic Microbes Associated with Discodermia spp. (Porifera: Demospongiae)

    Get PDF
    Sponges are well known to harbor large numbers of heterotrophic microbes within their mesohyl. Studies to determine the diversity of these associated microbes have been attempted for only a few shallow water species. We cultured various microorganisms from several species of Discodermia collected from deep water using the \u27Johnson-Sea-Link\u27 manned submersibles, and characterised them by standard microbiological identification methods. Characterisation of a small proportion (ca. 10%) of the total and potential eubacterial isolate collection with molecular systematics techniques revealed a wide diversity of microbes. Phylogenetic analyses of 32 small subunit (SSU) 16S-like rRNA gene sequences from different micorbes indicated high levels of taxonomic diversity assoiated with this genus of sponge. For example, bacteria from at least five cubacterial subdivisions - gamma, alpha, beta, Cytophaga and Gram positive - were isolated from the mesohyl of Discodermia. Several strains were unidentifiable from current sequence databases. No overlap was found between sequences of 24 isolates and 8 sequences obtained by PCR and cloning directly from sponge samples. The abundance and diversity of microbes associated with sponges such as Discodermia suggest that they may play important roles in marine microbial ecology, dispersal and evolution

    TDAG51 is an ERK signaling target that opposes ERK-mediated HME16C mammary epithelial cell transformation

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Signaling downstream of Ras is mediated by three major pathways, Raf/ERK, phosphatidylinositol 3 kinase (PI3K), and Ral guanine nucleotide exchange factor (RalGEF). Ras signal transduction pathways play an important role in breast cancer progression, as evidenced by the frequent over-expression of the Ras-activating epidermal growth factor receptors EGFR and ErbB2. Here we investigated which signal transduction pathways downstream of Ras contribute to EGFR-dependent transformation of telomerase-immortalized mammary epithelial cells HME16C. Furthermore, we examined whether a highly transcriptionally regulated ERK pathway target, PHLDA1 (TDAG51), suggested to be a tumor suppressor in breast cancer and melanoma, might modulate the transformation process.</p> <p>Methods</p> <p>Cellular transformation of human mammary epithelial cells by downstream Ras signal transduction pathways was examined using anchorage-independent growth assays in the presence and absence of EGFR inhibition. TDAG51 protein expression was down-regulated by interfering small hairpin RNA (shRNA), and the effects on cell proliferation and death were examined in Ras pathway-transformed breast epithelial cells.</p> <p>Results</p> <p>Activation of both the ERK and PI3K signaling pathways was sufficient to induce cellular transformation, which was accompanied by up-regulation of EGFR ligands, suggesting autocrine EGFR stimulation during the transformation process. Only activation of the ERK pathway was sufficient to transform cells in the presence of EGFR inhibition and was sufficient for tumorigenesis in xenografts. Up-regulation of the PHLDA1 gene product, TDAG51, was found to correlate with persistent ERK activation and anchorage-independent growth in the absence or presence of EGFR inhibition. Knockdown of this putative breast cancer tumor-suppressor gene resulted in increased ERK pathway activation and enhanced matrix-detached cellular proliferation of Ras/Raf transformed cells.</p> <p>Conclusion</p> <p>Our results suggest that multiple Ras signal transduction pathways contribute to mammary epithelial cell transformation, but that the ERK signaling pathway may be a crucial component downstream of EGFR activation during tumorigenesis. Furthermore, persistent activation of ERK signaling up-regulates TDAG51. This event serves as a negative regulator of both Erk activation as well as matrix-detached cellular proliferation and suggests that TDAG51 opposes ERK-mediated transformation in breast epithelial cells.</p

    Proceedings Of The 23Rd Paediatric Rheumatology European Society Congress: Part Two

    No full text
    PubMe
    corecore