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Background: CD40 ligand (CD40L) deficiency, an X-linked
primary immunodeficiency, causes recurrent sinopulmonary,
Pneumocystis and Cryptosporidium species infections. Long-term
survival with supportive therapy is poor. Currently, the only
curative treatment is hematopoietic stem cell transplantation
(HSCT).
Objective: We performed an international collaborative study
to improve patients’ management, aiming to individualize risk
factors and determine optimal HSCT characteristics.
Methods: We retrospectively collected data on 130 patients who
underwent HSCT for CD40L deficiency between 1993-2015. We
analyzed outcome and variables’ relevance with respect to
survival and cure.
Results: Overall survival (OS), event-free survival (EFS), and
disease-free survival (DFS) were 78.2%, 58.1%, and 72.3%
5 years after HSCT. Results were better in transplantations
performed in 2000 or later and in children less than 10 years old
at the time of HSCT. Pre-existing organ damage negatively
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Hôpitaux de Paris (AP-HP), Paris; iBiotherapy Department, Necker Children’s

Hospital, AP-HP, Paris; jBiotherapy Clinical Investigation Center, Groupe Hospitalier

Universitaire Ouest, AP-HP, INSERM, Paris; kINSERM UMR 1163, Laboratory of

Human Lymphohematopoiesis, Paris; lthe Dmitry Rogachev Federal Research Centre

of Pediatric Hematology, Oncology and Immunology, Moscow; mthe Pediatric

Oncology-Hematology and BMTUnit, Spedali Civili di Brescia, Brescia; nthe Depart-

ment of Pediatrics, King Faisal Specialist Hospital & Research Center, Riyadh; othe

Department of Pediatric Hematology and Oncology, University Hospital Motol

Prague, Prague; pInstitut d’Hematologie et d’Oncologie Pediatrique, Hospices Civils

de Lyon, Lyon; qL. Hirszfeld Institute of Immunology and Experimental Therapy, Pol-

ish Academy of Sciences,Wroc1aw; rthe Lower Silesian Center for Cellular Transplan-
tation &National BoneMarrowDonor Registry,Wroc1aw; sthe Department of Allergy

and Immunology, Royal Children’s Hospital, Melbourne; tthe Immunology Depart-

ment, Children’s Memorial Health Institute, Warsaw; uthe Department of Pediatrics,

University of Texas Southwestern Medical Center Dallas; vthe Division of Pediatric

Allergy, Immunology & Bone Marrow Transplantation, University of California,

San Francisco; wthe Department of Pediatrics, Sahlgrenska Academy at University

of Gothenburg and Queen Silvia Children’s Hospital, Gothenburg; xthe Pediatric

Oncology and Hematology Unit, Children Hospital, University Hospital Nancy, Van-

doeuvre-les-Nancy; ythe Pediatric Clinic, Rigshospitalet, Copenhagen; zthe Depart-

ment of Pediatrics, University Medical Center Ulm; aathe Department of Pediatrics,

Division of Allergology, Clinical Immunology, Respiratory Diseases and Rheuma-

tology, University Hospital Center Zagreb; bbthe Department of Pediatrics/Willem-

Alexander Children’s hospital, Leiden University Medical Center; ccthe Department

of Pediatrics, University Medical Centre Utrecht, Utrecht University; ddthe Princess

Maxima Center for Pediatric Oncology, Utrecht; eeH�ematologie Adulte, Hôpital
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Abbreviations used

BM: Bone marrow

CD40L: CD40 ligand

DFS: Disease-free survival

DLI: Donor lymphocyte infusion

EBMT: European Society for Blood and Marrow

Transplantation

EFS: Event-free survival

ESID: European Society for Immunodeficiencies

FU: Follow-up

GVHD: Graft-versus-host disease

HSCT: Hematopoietic stem cell transplantation

IEWP: Inborn Errors Working Party

MAC: Myeloablative conditioning

MAC low tox: Myeloablative conditioning with low toxicity

MMFD: Mismatched family donor

MMUD: Mismatched unrelated donor

MSD: Matched sibling donor

MUD: Matched unrelated donor

NMA: Nonmyeloablative

OS: Overall survival

PBSC: Peripheral blood stem cell

PID: Primary immunodeficiency

PIDTC: Primary Immune Deficiency Treatment Consortium

RIC: Reduced-intensity conditioning

SCETIDE: Stem Cell Transplant for Primary Immune Defi-

ciencies in Europe

UCB: Umbilical cord blood

*References 1, 20, 21, 33, 34, 36, 39, 42, 43, and 46-49.
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CD40 ligand (CD40L) deficiency (X-linked hyper-IgM syn-
drome type 1 [OMIM#308230])1,2 is a rare X-linked primary im-
munodeficiency (PID) caused by mutations in CD40LG on
chromosome Xq26.3-Xq27.1, which encodes the transmembrane
CD40L glycoprotein (CD154, OMIM#300386).3-8 Mutations in
CD40LG result in altered costimulatory T-lymphocyte function,9

which impairs B-lymphocyte isotype switching, antibody produc-
tion, and dendritic cell signaling.Myeloid cell function and devel-
opment are also impaired.10,11 This leads to increased
susceptibility to bacterial and intracellular pathogens.

Patients usually present in early childhood with recurrent upper
and lower respiratory tract infections and Pneumocystis jirovecii
pneumonia.12,13 Acute or chronic diarrhea is frequently associ-
ated with Cryptosporidium species infection, which can lead to
severe biliary tract disease, especially sclerosing cholangitis
and cirrhosis and rarely cholangiocarcinoma, hepatocellular car-
cinoma, and adenocarcinoma.14

An increased frequency of central nervous system infections
(enteroviral meningoencephalitis15 and JC virus progressive
multifocal leukoencephalopathy),16 often resulting in neurode-
generation,12,17 has been reported.

Historically, long-term survival with conservative therapy has
been poor, with 20% to 50% of patients surviving to the third
decade.12,18,19 Hepatic disease and severe infections represent the
major causes of death,12 and many patients have chronic comor-
bidities.18 More recent data show a median survival time from
diagnosis of 25 years in 109 patients with X-linked hyper-IgM
syndrome.20

Currently, the only curative treatment is hematopoietic stem
cell transplantation (HSCT). Numerous published case re-
ports21-36 and single-center experiences37-42 report encouraging
results, especially with an HLA-matched sibling donor (MSD).
However, there is a risk of complications, and overall survival
(OS) is not optimal.18 In the European retrospective analysis of
38 patients with CD40L deficiency receiving HSCT,43 OS was
68%, with 32% of patients dying from infection-related compli-
cations, particularly severe cryptosporidiosis. Transplantation
was curative in 58% of patients, 72% of those without hepatic dis-
ease. Pre-existing lung disease was the most important adverse
risk factor.

The choice of performing early HSCT using myeloablative
conditioning (MAC) or a later transplantation with reduced-
intensity conditioning (RIC) or treating patients with full
supportive treatment only is still debated. Guidelines for the
management of these patients were proposed by the European
Society for Blood and Marrow Transplantation (EBMT)/
European Society for Immunodeficiencies (ESID) Inborn Errors
Working Party (IEWP) in 2011.44 Recommendations about
HSCT based on donor type and disease-related complication
status favored HSCT at diagnosis when an MSD was available
and medical support until development of early complications
for matched unrelated donors (MUDs) or mismatched unrelated
donors (MMUDs) and progressive organ damage for mismatched
family donors (MMFDs). A recently published study45 reported
improved survival in 29 Japanese patients undergoing HSCT
(OS, 86.2%), with better event-free survival (EFS) and disease-
free survival (DFS) in children younger than 5 years of age at
the time of transplantation. A multicenter study comparing
outcomes with or without HSCT showed an 85% OS in 67
patients in the transplantation group.20

We report the results of a retrospective international
collaborative study on patients who underwent HSCT for
CD40L deficiency between 1993 and 2015, reported in the
Stem Cell Transplant for Primary Immune Deficiencies in Europe
(SCETIDE) and EBMT registries and from North American
Primary Immune Deficiency Treatment Consortium (PIDTC)
centers. We analyzed the outcome and relevance of different
variables with respect to survival and cure rate after HSCT,
aiming to individualize specific risk factors for patients and
determine the optimal timing and type of HSCT.
METHODS

Data collection
Transplantation centers known to have performed HSCT in CD40L-

deficient patients were identified from SCETIDE and EBMT registries (for

European, Saudi Arabian, and Australian centers) and through the network of

PIDTC centers in the United States.

Retrospective data collection on the outcome of HSCTwas performed with

a comprehensive questionnaire for 130 patients with CD40L deficiency

undergoing transplantation in 36 centers in 18 countries over 4 continents (see

Table E1 in this article’s Online Repository at www.jacionline.org) between

1993 and 2015, with a follow-up (FU) between 0.2 and 17.6 years (median,

4.1 years). Data from 35 patients have been previously published.*

Patients in whom the diagnosis of CD40L deficiency was based on

molecular genetic analysis, evidence of absent protein, or both were included

http://www.jacionline.org


TABLE I. Clinical features of CD40L-deficient patients before the first HSCT

Patients’ features before HSCT Total*

All patients

(n 5 130), median (range)

HSCT up to 1999

(n 5 24), median (range)

HSCT since 2000

(n 5 106), median (range) P value

Age at diagnosis (mo) 126 11.0 (0-131) 13.0 (3-129) 10.7 (0-131) .2466

Age at HSCT (y) 130 4.0 (0.5-38.3) 8.5 (1.0-18.1) 3.4 (0.5-38.3) .0012

Interval between diagnosis and HSCT (y) 126 2.0 (0-27.4) 3.9 (0.9-16.2) 1.5 (0-27.4) .0012

Total* No. Percent No. Percent No. Percent P value

CD40L expression 87 .4525

Absent 71 82 11 92 60 80

Low 16 19 1 8 15 20

Age at HSCT (y) 130 .0320

0-5 79 61 10 42 69 65

5-10 26 20 5 21 21 20

>10 25 19 9 37 16 15

Organ damage before HSCT 119 45 38 15 71 30 31 .0005

Infections before HSCT

All 129 117 91 22 96 95 89 .6919

URTI 124 60 48 14 67 46 45 .0659

LRTI 125 86 69 15 71 71 68 .7756

PJP 108 47 44 7 39 40 44 .6643

Cryptosporidium species 118 29 25 9 47 20 20 .0189

Need of ventilation 106 38 36 6 38 32 36 .8812

Chronic lung disease 114 17 15 5 29 12 12 .1305

Neutropenia 123 57 46 11 52 46 45 .5422

Oral ulcers 122 26 21 6 29 20 20 .3869

Failure to thrive 125 37 30 7 33 30 29 .6812

Protracted diarrhea 126 31 25 10 48 21 20 .0073

Liver disease� 126 33 26 11 50 22 21 .0052

Sclerosing cholangitis 125 28 22 9 43 19 18 .0211

Autoimmunity 111 6 5 1 7 5 5 .5636

Malignancies 119 3 3 2 10 1 1 .0800

IG supplementation 125 123 98 19 90 104 100 .0271

Cryptosporidium species prophylaxis 100 31 31 7 54 24 28 .1035

PJP prophylaxis 113 109 97 15 88 94 98 .1068

Organ damage was defined as the presence of chronic lung disease, liver alterations (sclerosing cholangitis or liver fibrosis or hepatitis), or both. Significant P values (P < .05) are

shown in boldface.

IG, Immunoglobulins; LRTI, lower respiratory tract infection; PJP, Pneumocystis jirovecii pneumonia; URTI, upper respiratory tract infection.

*Number of patients with available data.

�All liver alterations, including also ascending cholangitis, mild hepatic portal inflammation, and minimal alterations.
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in the study. Five (3.8%) patients had no available molecular diagnosis or

protein expression data but were included based on their clinical history and

presentation. Of these, 3 underwent transplantation before 2000 and died. At

that time, molecular diagnosis was not always performed, and it was not

possible to pursue diagnosis after death.

Centers were responsible for acquiring informed consent from patients and

families for data collection and for quality of data entry.
Patients’ characteristics
Patients’ clinical features before HSCT are summarized in Table I by year

of HSCT, showing significant differences between the 2 historical cohorts. In

particular, patients who underwent transplantation before 2000 underwent

transplantation at an older age and at a greater interval after diagnosis, and

they were clinically more compromised (greater organ damage, especially

liver disease, before transplantation).

Median age at diagnosis was 11 months (range, 0-131 months) and was not

significantly influenced by historical period. Forty-seven patients received a

diagnosis in the first 6 months of life, 11 at birth because of a positive family

history. CD40L protein expression on activated CD41 T lymphocytes was

available for 87 (66.9%) patients, absent in the majority (81.6%), and most

frequently quantified by using flow cytometry. Diagnosis was confirmed by

CD40L gene analysis in 108 (83.1%) patients, which showedmainly deletions
and missense mutations (see Table E2 in this article’s Online Repository at

www.jacionline.org). CD40L expression before HSCT did not significantly

differ in patients with these types of mutations.

Additional details on the cohort’s clinical characteristics are reported in the

Methods section in this article’s Online Repository at www.jacionline.org.
Transplantation
Patients’ performance status at the time of transplantation was determined

based on the Lansky or Karnofsky score according to age. Most patients

(70.2%) who underwent transplantation after 2000 had a score of 90 or greater

at first HSCT. These data were unavailable for most transplantations

performed before 2000.

Characteristics of first HSCTs, second HSCTs, boosts, and donor

lymphocyte infusions (DLIs) are summarized in Tables II and E3 in this arti-

cle’s Online Repository at www.jacionline.org. Conditioning regimens were

grouped according to their intensity and toxicity features into the following

4 types: MAC, myeloablative conditioning with low toxicity (MAC low

tox), RIC,50,51 and nonmyeloablative (NMA) conditioning (see Fig E1 and

Table E4 in this article’s Online Repository at www.jacionline.org). MAC

was the most commonly used conditioning regimen for first transplantations

in the historical group (92%), whereas after 2000, the use of RIC and MAC

low tox regimens has increased (24% and 20%, respectively; P 5 .0034).

http://www.jacionline.org
http://www.jacionline.org
http://www.jacionline.org
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TABLE II. Characteristics of the first HSCT performed on 130 CD40L-deficient patients

First HSCT

characteristics Total*

All patients (n 5 130)

HSCT up to 1999

(n 5 24)

HSCT since 2000

(n 5 106)

P valueNo. Percent No. Percent No. Percent

Conditioning regimen 129 .0034

MAC 79 61 22 92 57 54

MAC low tox 21 16 0 0 21 20

RIC 27 21 2 8 25 24

NMA 2 2 0 0 2 2

GVHD prophylaxis 129 1.0000

Yes 123 95 23 96 100 95

No 6 5 1 4 5 5

Donor type 123 .3092

MSD 37 30 10 45 27 27

MUD 46 37 7 32 39 39

ad. vol. 46 100 7 100 39 100

UCB 0 0 0 0 0 0

MMUD 36 29 5 23 31 31

ad. vol. 29 81 5 100 24 77

UCB 7 19 0 100 7 23

MMFD 4 3 0 0 4 4

Stem cell source 129 .0006

BM 86 67 24 100 62 59

PBSC 33 25 0 0 33 31

UCB 10 8 0 0 10 10

Significant P values (P < .05) are shown in boldface.

ad. vol., Adult volunteer; NMA, nonmyeloablative conditioning.

*Number of patients with available data.
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NMA was used in 2 first and 2 second transplantations. Because of the low

numbers in this group, this was not included in statistical analyses. Because

no data about busulfan pharmacokinetics (area under the curve) were avail-

able, busulfan-containing regimens were divided between MAC and RIC

groups based on the total dose of busulfan administered in case of combination

with fludarabine (14.3-25.0mg/kg inMAC and 4.0-13.6mg/kg in RIC, see Fig

E1). In the other cases classification as MAC was based on other features (eg,

combination with cyclophosphamide) and not solely on busulfan dose.

Donor type was defined as follows: MSD, MUD (10/10, 12/12, or 8/8 HLA

match), and MMUD (with >_1 mismatch) and MMFD (with >_1 mismatch),

usually a haploidentical parent. Data about methods used for HLA match

testing were available for only 51.3% of the procedures, with molecular

techniques used in the majority of cases (75.3%). Data from donors with

unavailable or inaccurate information about degree of matching (number of

loci studied < 8 for nonsibling donors) were excluded from statistical analysis.

MSDs were the preferred donor types before 2000. The proportion of

unrelated donors has since increased for bothmatched andmismatched donors

(39% and 31%, respectively), mainly represented by adult volunteers

(Table II).

The stem cell source was bone marrow (BM), peripheral blood stem cells

(PBSCs), and umbilical cord blood (UCB). Until 1999, BMwas the only stem

cell source used for first HSCT. Use of PBSCs and UCB became subsequently

more common (31% and 10% HSCT, respectively; P 5 .0006; Table II).

T-lymphocyte depletion of the graft was performed in 28 procedures,

mainly through positive selection of CD341 cells (n5 19). This techniquewas

used in all cases of PBSC transplantations from MMFD (n 5 4) and in 8

MMUD and 7 MUD transplants. In 6 recent unrelated donor PBSC transplan-

tations performed in a single center since 2012, T-cell receptor ab depletion

was used. Ex vivo graft manipulation details are reported (see Table E5 in

this article’s Online Repository at www.jacionline.org). In vivo T-lymphocyte

depletionwas performedmainly by using antithymocyte globulin (51.3%) and

alemtuzumab (20%), especially in the unrelated donor setting (see Table E4

and data not shown).

Graft-versus-host disease (GVHD) prophylaxis was used in most proced-

ures (92%). No additional GVHD prophylaxis was administered in 8 of 19
transplantations with CD341 cell selection and in 1 boost. GVHD prophylaxis

regimen was based on cyclosporine administration in 88.4% of cases, either

alone (25.4%) or in combination with other drugs, mainly methotrexate

(29.7%), mycophenolate mofetil (19.6%), or corticosteroids (9.5%). Acute

GVHD was graded according to EBMT guidelines and defined as severe

when grade 3 or greater. Chronic GVHDwas classified as extensive or limited

based on the clinical severity and extent of target organ involvement.

Donor chimerism was defined as complete if 95% or more cells were of

donor origin, partial if between 5% and 95% cells were of donor origin, and

absent if donor cells represented 5% or less of total cells. Partial chimerism

analysis on purified cell subpopulations (granulocytes, CD31 T lymphocytes,

and CD191 B lymphocytes) was analyzed in a subgroup of patients subdi-

vided into predominantly donor (50% to 94%) and predominantly recipient

(6% to 49%) cells. Fluorescence in situ hybridization or molecular testing

based on short-tandem repeats analysis was used to monitor donor cell

chimerism.

Additional details are reported in the Methods section in this article’s On-

line Repository.
Statistical analysis
The description of continuous variables was done by using medians and

ranges or interquartile ranges, whereas the comparison between groups was

based on the Wilcoxon rank sum test. Categorical variables were analyzed

through frequency distributions and compared by using the x2 or Fisher exact

test, as appropriate.

OS, EFS, and DFS calculations were performed both in thewhole cohort of

patients and in the subgroups of patients undergoing transplantation before

(historical cohort) or since 2000. Comparisons of these 2 groups are shown in

Figs 1 and 2 and Fig E2 in this article’s Online Repository at www.jacionline.

org. Results from the analyses focused on most patients undergoing recent

transplantation, which are more representative of current clinical practice,

are reported in Table III. EFSwas calculated as the time fromHSCT to the first

of the following events: graft failure/absent engraftment; need for second

HSCT, boost, or DLI; grade 4 acute GVHD or extensive chronic GVHD;

http://www.jacionline.org
http://www.jacionline.org
http://www.jacionline.org


FIG 1. Characteristics influencing OS in patients receiving first HSCT before/after 2000. A, Age at HSCT. Sur-

vival curves of patients less than 5 and 5 to 10 years old at HSCT undergoing transplantation before 2000 are

superimposed. B, Organ damage before HSCT. C, Cryptosporidium species infection before HSCT. D, All

liver alterations. E, Sclerosing cholangitis. F, Waiting time to HSCT from diagnosis. Under each graph,

the number of patients at risk at each FU time point after HSCT is reported for all patient groups. OS curves

of different patient groups are represented by solid or dashed lines. For each of them, a specific label is re-

ported near the corresponding curve.
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FIG 2. Characteristics influencing EFS in patients receiving first HSCT before/after 2000. A, Age at HSCT. B,

Organ damage before HSCT. C, Sclerosing cholangitis before HSCT. D, Donor type. E, Source of stem cells.

F, Conditioning regimen. Under each graph, the number of patients at risk at each FU time point after HSCT

is reported for all patient groups. EFS curves of the different groups are represented by solid or dashed
lines. For each of them, a specific label is reported near the corresponding curve. CB, Cord blood; PB, pe-
ripheral blood.
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TABLE III. OS, EFS, and DFS in CD40L-deficient patients undergoing transplantation since the year 2000

Characteristics

OS EFS DFS

No. of

events/no.

of patients*

2-y FU

(%)

SE

(%)

5-y FU

(%)

SE

(%) P value

No. of

events/no.

of patients*

2-y

FU (%)

SE

(%)

5-y

FU (%)

SE

(%) P value

No. of

events/no.

of patients*

2-y FU

(%)

SE

(%)

5-y FU

(%)

SE

(%) P value

Overall 16/106 86.1 3.5 82.2 4.3 — 37/106 64.2 3.6 61.3 5.1 — 20/106 78.7 4.5 77.1 4.7 —

Age at HSCT (y) .0005 .0238 .0001

<5 6/69 91.0 3.5 91.0 3.5 24/69 64.3 6.1 62.1 6.3 8/65 85.4 4.9 85.4 4.9

5-10 3/21 89.3 7.2 82.4 9.4 4/21 85.2 7.9 78.1 9.3 4/26 85.5 7.9 79.8 9.2
>_10 7/16 58.3 13.8 43.8 16.1 9/16 33.3 13.3 33.3 13.3 8/15 38.1 14.3 38.1 14.3

Age at diagnosis (mo) .2777 .0148 .06

<12 7/59 89.6 4.0 86.8 4.8 15/59 72.8 6.1 72.8 6.1 8/60 87.2 4.6 84.4 5.3

>12 9/45 80.6 6.2 75.8 7.5 22/45 51.0 8.0 44.6 8.2 12/43 64.8 8.5 64.7 8.5

Time between diagnosis

and HSCT (y)

.0014 .1226 .0025

<_2 3/59 94.3 3.2 94.3 3.2 17/59 69.7 6.5 66.8 6.9 4/53 90.5 4.6 90.5 4.6

>2 13/45 74.8 6.6 67.2 7.9 20/45 55.8 7.7 52.8 7.8 16/50 65.5 7.4 62.5 7.7

Organ damage before

HSCT

.0014 .0071 <.0001

No 5/68 92.2 3.4 92.2 3.4 16/68 74.5 5.6 74.5 5.6 4/60 92.9 3.4 92.9 3.4

Yes 10/30 72.4 8.4 62.7 9.8 15/30 49.5 9.6 45.7 9.6 12/28 58.3 9.7 53.9 10.0

Chronic lung disease .2545 .1433 .1026

No 10/85 89.0 3.5 86.9 4.0 24/85 71.0 5.2 69.0 5.4 11/79 85.1 4.5 82.7 5.0

Yes 3/12 73.3 13.2 73.3 13.2 6/12 45.8 15.0 45.8 15.0 4/12 64.8 14.3 64.8 14.3

Cryptosporidium species

infection (gastrointestinal)

.001 .0603 <.0001

No 7/79 90.7 3.4 90.7 3.4 23/79 69.9 5.5 67.9 5.7 7/74 89.7 4.0 89.7 4.0

Yes 7/20 68.8 10.7 60.2 12.3 9/20 50.0 12.1 50.0 12.1 8/18 55.7 13.2 44.6 14.5

Protracted diarrhea .0023 .5314 .0371

No 8/84 90.2 3.3 90.2 3.3 28/84 65.8 5.6 61.9 5.9 10/76 84.4 4.7 84.4 4.7

Yes 8/21 70.2 10.2 56.3 12.2 9/21 56.1 11.0 56.1 11.0 8/22 65.5 10.7 60.1 11.1

Sclerosing cholangitis .0003 .0126 <.0001

No 8/85 90.0 3.4 90.0 3.4 26/85 67.7 5.5 65.7 5.6 8/79 88.3 4.0 88.3 4.0

Yes 8/19 67.5 11.0 52.1 12.9 11/19 43.0 12.0 36.8 11.8 10/18 46.0 12.4 38.3 12.5

Liver disease� .002 .0666 .0009

No 8/82 89.7 3.5 89.7 3.5 26/82 66.7 5.6 64.6 5.8 10/80 85.3 4.4 85.3 4.4

Yes 8/22 71.8 9.9 57.6 12.1 11/22 49.7 11.4 44.2 11.4 10/22 53.8 11.6 47.1 12.0

Pneumonias .6865 .7624 .6436

No 6/33 84.2 6.5 76.5 9.4 13/33 65.4 8.5 56.7 9.3 7/32 71.4 9.5 71.4 9.5

Yes 10/71 86.7 4.2 84.4 4.6 23/71 64.6 6.7 64.6 6.7 11/65 82.9 5.0 80.2 5.5

PJP .6862 .9663 .9081

No 6/50 87.2 4.9 87.2 4.9 16/50 68.0 6.9 64.9 7.2 8/51 82.0 6.0 82.0 6.0

Yes 6/40 87.2 5.4 83.1 6.5 13/40 63.6 8.3 63.6 8.3 6/35 83.6 6.9 78.3 8.2

URTI .4377 .1809 .1457

No 7/57 88.3 4.5 84.6 5.7 16/57 66.6 7.1 66.6 7.1 7/55 86.1 5.5 82.0 6.6
Yes 9/46 82.4 5.7 78.5 6.6 20/46 60.0 7.3 54.8 7.6 11/40 70.0 7.7 70.0 7.7

(Continued)
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TABLE III. (Continued)

Characteristics

OS EFS DFS

No. of

events/no.

of patients*

2-y FU

(%)

SE

(%)

5-y FU

(%)

SE

(%) P value

No. of

events/no.

of patients*

2-y

FU (%)

SE

(%)

5-y

FU (%)

SE

(%) P value

No. of

events/no.

of patients*

2-y FU

(%)

SE

(%)

5-y FU

(%)

SE

(%) P value

Need of ventilation before

HSCT

.5732 .8708 .6827

No 7/58 89.2 4.2 86.2 5.0 19/58 65.9 6.7 63.3 6.9 10/55 80.8 5.9 77.4 6.6

Yes 5/32 82.7 7.2 82.7 7.2 10/32 67.3 8.6 67.3 8.6 4/29 84.1 7.4 84.1 7.4

Neutropenia .3152 .3861 .8773

No 10/56 82.6 5.3 79.3 6.0 17/56 67.3 6.7 67.3 6.7 10/55 80.8 6.0 77.1 6.7

Yes 5/46 88.8 4.7 88.4 4.7 18/46 62.1 7.6 55.9 8.0 7/39 79.2 7.2 79.2 7.2

Oral ulcers .3384 .8886 .8351

No 9/81 89.7 3.5 87.6 4.0 26/81 68.1 5.5 64.2 5.8 13/81 82.4 4.8 80.2 5.1

Yes 4/20 83.8 8.6 73.3 12.4 7/20 61.5 11.5 61.5 11.5 2/14 80.2 12.8 80.2 12.8

FTT .868 .74 .4987

No 11/74 87.4 3.9 81.7 5.5 25/74 63.3 5.9 63.3 5.9 11/69 84.1 4.7 81.6 5.2

Yes 5/30 81.8 7.4 81.8 7.4 12/30 63.4 9.5 51.9 10.7 6/27 70.6 10.6 70.6 10.6

No Cryptosporidium species

prophylaxis before HSCT

.8896 .9309 .9141

No 6/63 84.8 4.7 84.8 4.7 21/63 65.7 6.4 63.1 6.6 10/62 80.9 5.6 80.9 5.6

Yes 3/24 87.5 6.8 87.5 6.8 8/24 61.9 10.9 61.9 10.9 3/21 85.7 7.6 85.7 7.6

Conditioning regimen .0073 <.0001 .0031

MAC 5/57 92.7 3.5 90.0 4.3 10/57 81.6 5.3 81.6 5.3 6/58 91.0 3.9 88.3 4.6

RIC 8/25 71.8 9.1 62.8 11.5 16/25 41.9 10.2 32.6 9.8 9/23 55.0 11.6 55.0 11.6

MAC low tox 1/21 93.3 6.4 93.3 6.4 8/21 42.8 15.8 42.8 15.8 1/17 83.3 15.2 83.3 15.2

NMA� 1/2 50.0 35.4 k k 2/2 0 § k k 2/3 33.3 27.2 33.3 27.2

Donor type .0373 .0605 .2619

MSD 3/27 88.8 6.1 88.8 6.1 5/27 85.0 6.9 80.8 7.8 4/27 88.8 6.1 84.6 7.1

MUD 2/39 94.0 4.1 94.0 4.1 13/39 61.6 9.0 56.9 9.5 5/38 94.2 4.0 77.6 9.3

MMUD ad. vol. 7/24 72.7 9.8 58.1 15.2 10/24 52.1 11.9 52.1 11.9 7/24 72.6 9.8 63.6 12.0

MMFD 1 mmUCB 3/11 81.8 11.6 70.1 14.7 6/11 45.5 15.0 45.5 15.0 2/11 90.9 8.7 77.9 14.1

Stem cell source .0936 .0035 .1123

BM 6/62 91.7 3.6 88.3 4.8 15/62 75.5 5.8 73.0 6.1 8/60 84.1 5.3 84.1 5.3

PBSC 7/33 78.4 8.0 72.8 9.2 17/33 43.6 10.1 37.4 10.4 10/36 65.2 10.0 58.7 10.9

UCB 3/10 70.0 14.5 70.0 14.5 5/10 50.0 15.8 50.0 15.8 2/8 75.0 15.3 75.0 15.3

Organ damage was defined as the presence of chronic lung disease, liver alterations (sclerosing cholangitis or liver fibrosis or hepatitis), or both. EFS and OS were calculated from the first HSCT, whereas DFS was calculated from the last

procedure (ie, second HSCT, boost, or DLI), and thus the analyses were performed considering the covariates at the proper procedure. Significant P values (P < .05) are shown in boldface.

ad. vol., Adult volunteer; FTT, failure to thrive; mm, mismatched; PJP, Pneumocystis jirovecii pneumonia; URTI, upper respiratory tract infection.

*Number of patients with available data.

�All liver alterations, including ascending cholangitis, mild hepatic portal inflammation, and minimal alterations.

�The NMA group is reported for descriptive purposes only but has not been included in the statistical analyses (log-rank test) because of its low numbers.

§SEs were not estimable at this time point.

kNo subjects at risk at this time point.
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requirement for immunoglobulin supplementation for more than 2 years after

HSCT; or death. Events for calculation of DFS were the ongoing requirement

of immunoglobulin supplementation 2 years after the last procedure and death,

whereas the only event considered for OS was death from any cause. Patients

observations were censored at the date of last contact when no events were

observed. The Kaplan-Meier method was used to estimate the probabilities

of OS, EFS, and DFS, with SEs calculated according to the methods of Green-

wood. Curves were compared by using the log-rank test, and pairwise compar-

isons were adjusted for multiplicity according to themethod of Sidek, whereas

the Cox proportional hazard model was used for multivariable analyses. All

tests were performed 2-sided, with a .05 level of significance.

Analyses were performed in SAS 9.3 (SAS Institute, Cary, NC) and R 3.2.2

(R Foundation for Statistical Computing, Vienna, Austria) software.
RESULTS

Overall survival
Data from 154 procedures were collected: 130 first, 13 second,

and 1 third HSCT; 6 cell boosts (infusions of cells from the same
donor without conditioning); and 4 DLIs. Most were performed
since 2000. Median age at first transplantation was 4.0 years
(range, 0.5-38.3 years). Patients from the historical cohort
underwent transplantation at an older age (median, 8.5 years)
compared with those treated after 2000 (median, 3.4 years;
P 5 .0012). Median time interval between diagnosis and HSCT
was 2.0 years, although it was slightly higher for HSCT before
2000 (3.9 years, P 5 .0012, Table I).

OS after first HSCT improved,43 reaching 81% and 78.2% at 2
and 5 years, respectively. In particular, as observed in patients
with other PIDs, outcome improved after 2000, likely because
of improvement in transplant-related procedures and patient man-
agement (5-year OS before 2000, 58.3%; OS since 2000, 82.2%;
P 5 .0030).

Patients undergoing transplantation at less than 5 years of age
reached nearly 90% OS at 2 and 5 years after HSCT. Those older
than 10 years at treatment had a 37.8% OS at 5 years (P <.0001).
This ‘‘age effect’’ was also observed in patients undergoing trans-
plantation since 2000, although a slight improvement in OS was
noted in older patients (OS of 43.8% at 5 years, Fig 1, A, and
Table III). Age at diagnosis (<12 vs >12months) did not influence
OS. Waiting time between diagnosis and HSCT had an effect on
outcome, with significantly better survival for those undergoing
transplantation within 2 years from diagnosis (Fig 1, F).

Pre-existing organ damage (mainly chronic lung disease, liver
dysfunction, or both) before HSCT negatively influenced
outcome (OS of 61.5% at 2 years and 55.6% at 5 years; without
organ damage: OS of 92.9% at 2 and 5 years; P < .0001). Liver
disease, especially sclerosing cholangitis, was the most important
adverse risk factor (OS of 51.2% and 46.9% at 5 years, respec-
tively; P < .0001), followed by protracted diarrhea (OS of
55.5% at 5 years, P 5 .0002) and gastrointestinal infection by
Cryptosporidium species (OS of 59.6% at 5 years, P 5 .0004).
These clinical features were confirmed to negatively influence
outcome also in patients undergoing most recent transplantations,
even if less profoundly (Fig 1,B-E, and Table III). The presence of
chronic lung disease, previously a significant risk factor,43 did not
significantly influence survival in recent transplantations. Type of
CD40L gene mutation, previous clinical history of respiratory
tract infections, including Pneumocystis jirovecii pneumonia,
requirement of ventilation before transplantation, neutropenia,
oral ulcers, failure to thrive, and absent Cryptosporidium species
prophylaxis before HSCT had no significant influence on OS.
Use of myeloablative conditioning regimens resulted in better
survival as compared with RIC after the year 2000 (P 5 .0073),
with significant differences emerging at pairwise comparison be-
tween MAC low tox or MAC and RIC (P5 .0197 and P5 .0258,
respectively; see Table E6 in this article’s Online Repository at
www.jacionline.org). Of note, OS in patients receiving MAC
improved in recent years (Table III and see Fig E3, A, in this
article’s Online Repository at www.jacionline.org).

Finally, a significant difference in OS emerged between
different donor types (whole cohort, P 5 .0198; >2000,
P 5 .0373), with better survival achieved with matched donors
(both sibling and unrelated donors). However, at pairwise com-
parison, the difference in OS between MUDs and MMUDs was
attenuated in most recent years (P 5 .0545), reflecting an
improved outcome also in the MMUD setting. Moreover, among
adult volunteer donors, there seemed to be a negative trend in
OS, with increasing number of mismatches (Table III and see
Fig E3, B, and Table E7 in this article’s Online Repository at
www.jacionline.org).
EFS
EFS after first HSCT was 62.6% and 58.1% at 2 and 5 years,

respectively, with only a slight improvement after the year 2000
(Table III). It was very low (25.2%) in patients undergoing trans-
plantation at 10 years of age or older, but an improvement was
observed in recent years in this subgroup (Fig 2, A). Age at diag-
nosis significantly influenced EFS, which appeared better in those
receiving early diagnosis (<1 year of age), whereas the time inter-
val from diagnosis to HSCTwas not relevant (Table III and data
not shown).

Pre-existing organ damage significantly affected EFS, in
particular the presence of sclerosing cholangitis, both in historical
and recent transplantations, in spite of an improvement in the
latter (Fig 2, B andC, and Table III). Other clinical features before
HSCT and genotype did not strongly influence EFS.

MAC was associated with greater EFS (81.6% at 5 years in
patients undergoing transplantation since 2000, P < .0001; Fig 2,
F, and Table III) as compared with MAC low tox and RIC (see
Table E6), possibly explained by better engraftment of donor cells
with this regimen or use in less compromised patients. Stem cell
source resulted in significant differences, with best EFS associ-
ated with BM (73% at 5 years’ FU in patients undergoing trans-
plantation since 2000; Fig 2, E, and Table III).

In recent years, no significant differences in EFS emerged
between donor types in univariate analysis (Fig 2, D, and Table
III). However, multivariable EFS analysis, which was performed
on patients undergoing transplantation after 2000 with complete
data (n 5 96), showed donor type and conditioning regimen to
be the most significant influences. In particular, patients receiving
HSCT from mismatched or MUD donors showed a 4.2- and 3.3-
fold increase, respectively, in the hazard of event compared with
those from MSDs (P5 .0189 and P5 .0607). RIC use was asso-
ciated with a 3.2-fold increased hazard ratio, as compared with
MAC (P 5 .0323). The presence of pre-existing organ damage
before HSCT was associated with a 2.7-fold increased hazard
(P 5 .1036). Pretransplantation sclerosing cholangitis and age
at HSCT had no relevant role on EFS (see Table E8 in this article’s
Online Repository at www.jacionline.org).

Results of DFS analysis are described in the Results section and
Fig E2 in this article’s Online Repository at www.jacionline.org.
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Causes of death
Twenty-six deaths were reported, most of them transplant-

related (n 5 22 [84.6%]). Most occurred within 6 months of
HSCT (n5 20 [76.9%]), mainly caused by infections (see Fig E4
in this article’s Online Repository at www.jacionline.org). Liver
failure was the cause of death of 2 patients with pre-existing scle-
rosing cholangitis who experienced severe liver GVHD, Crypto-
sporidium species infection, and veno-occlusive disease after
transplantation. Graft rejection was reported as the primary cause
of death in 3 patients.

Four non–transplantation-related deaths were caused by pro-
gression of original disease. In 2 cases neurologic complications
occurred, with progressive neurodegeneration in 1 patient and
worsening progressive multifocal leukoencephalopathy in
another patient with a history of JC virus encephalitis before
transplantation. In the other 2 cases infection (n 5 1) and
deteriorating liver function (n5 1) were complicated by previous
graft rejection (Table IV).
Rejection
Eighteen patients (14.8% of 122 patients with available data)

experienced graft rejection after first transplantation (Table IV).
Most occurred within 6 months of HSCT (72.2%), mainly after
unrelated donor transplantation (83.3%, 10 MUDs and 5
MMUDs, of which 3 were adult volunteers and 2 were UCB).
The stem cell source was BM, PBSCs, or UBC in 8, 8, and 2 pa-
tients, respectively. Positive selection of CD341 cells was per-
formed in 3 procedures. RIC was the most common
conditioning regimen (n 5 8), followed by MAC (n 5 5), MAC
low tox (n5 3), and NMA (n5 2). Most patients experienced in-
fections in the first 6 months of FU after first transplantation,
mainly of viral origin. No signs of acute GVHD were observed
in 72.2% of patients in this subgroup.

Most patients who rejected their first HSCT received further
therapeutic interventions (10 second HSCT, 1 third HSCT, and
1 cell boost) after a median of 11.7 months from the first
transplantation. Most were alive at the last FU (81.8%), and in
66.7% immunoglobulin supplementation could be discontinued.
Seven patients did not receive additional cell therapy procedures.
Three of these patients continued supportive care with immuno-
globulin supplementation and are alive, whereas the remaining 4
died. Deaths occurred at a median of 25 months after HSCT,
mainly because of disease progression (infections and deterio-
rating liver function). Donor type, stem cell source, and
occurrence of viral infections early after HSCT or acute GVHD
did not significantly influence the risk of rejection.

Information on additional procedures can be found in the
Results section and Table E3 in this article’s Online Repository at
www.jacionline.org.
Engraftment and cure rate
Transplantation resulted in complete or partial donor chime-

rism in most patients that was stable over time to the last FU (Fig
3,A). Data about lineage-specific donor chimerismwere available
only for a subgroup of patients. Median lineage-specific donor
chimerism remained stable at 88% or greater up to the last FU
(>1 year after last procedure) in both granulocytes and T lympho-
cytes, whereas in B lymphocytes a slight reduction in donor
chimerism was observed over time (median donor chimerism,
75%; Fig 3,B). At the last available FU (>1 year) after the last pro-
cedure (see Fig E5 in this article’s Online Repository at www.
jacionline.org), donor cell engraftment in granulocytes (CD151

cells) and T lymphocytes (CD31 cells) was complete or predom-
inantly donor in 78.1% and 82.9% patients with available data,
respectively, whereas in B lymphocytes a greater percentage of
predominantly recipient chimerism was observed (35.7%
patients).

Decreasing lineage-specific chimerismwas observed over time
in 27.8% of transplantations (with FU >_1 year among those with
available data). However, in another 25% of transplantations,
increasing donor cell chimerism in T- and B-lymphocyte sub-
populations was observed (Fig 4, A). In this subgroup 3 patients
received DLI infusion with a favorable effect on donor cell
chimerism.

Among survivors who ceased immunoglobulin replacement at
2 or more years after the last procedure and for whom data were
available, T-lymphocyte chimerism was complete or predomi-
nantly donor in 85.2%. B-cell chimerism was full donor in 7 and
predominantly recipient (range, 18% to 43% donor chimerism) in
5 of them (Fig 4, B).

A greater percentage of complete donor chimerism (63.2%)
was observed in transplantations in which patients did not
experience viral infections after HSCT (Fig 4,C). Moreover, viral
infections after HSCT might have influenced T-lymphocyte
chimerism kinetics: in the majority of transplantations in which
decreasing T-lymphocyte chimerism was observed (91.7%), viral
infections occurred in early FU, likely favoring expansion of
autologous lymphocytes to replenish the niche (Fig 4, D, and
data not shown).

Immune reconstitution and data regarding complications (see
Table E9 in this article’s Online Repository at www.jacionline.
org) can be found in the Results section in this article’s Online
Repository.
DISCUSSION
This is the largest HSCT series for CD40L deficiency collected

worldwide to date. It includes data from 130 patients undergoing
transplantation over more than 20 years. Interestingly, compar-
ison of the 2 historical cohorts of patients treated before and after
2000 clearly shows how patients’ features have changed over
time, mainly thanks to improvement in diagnostic tools and
clinical management. Most recent patients have undergone
transplantation at a younger age, with a shorter time interval
after diagnosis and lower organ damage burden. All these factors
have contributed to the general HSCT outcome improvement
observed in the past years.

These differences, although interesting, represented a difficulty
in data analysis that was hampered by the presence of potential
confounding between variables. For this reason, for main
outcome measures, we analyzed historical periods separately. In
particular, we decided to perform multivariate analysis only on
the most recent transplantation cohort because it could not be
performed with inclusion of the ‘‘period effect’’ because of
statistical model limitations. Moreover, although the heterogene-
ity induced by the period is relevant, we think that evaluation of
the more recent patient cohort is more interesting because it
reflects more closely the current clinical practice.

Other limitations of the study are represented by the sample
heterogeneity typical of retrospective observational studies,

http://www.jacionline.org
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TABLE IV. Transplant features, therapeutic intervention, and outcome in 18 patients who experienced graft rejection after the first

HSCT for CD40L deficiency

Patient

no.

Year of

first

HSCT

First HSCT stem

cell source

First

HSCT

donor

type

First HSCT

conditioning

regimen

Timing of

rejection/

decreasing

chimerism

Therapeutic

intervention (mo

after first HSCT)

Infections

in early FU*

Acute

GVHD

(grade)

Outcome

(at last FU)

8 2012 BM MUD RIC (Flu/Mel/ATG) 6 mo FU Second HSCT

(28.4)

ADV, EBV

Bacterial sepsis

Yes

(grade I)

Alive (on IVIG)

9 2012 PBSC

(TCRab

depleted)

MUD MAC low tox

(Treo/Flu/ATG)

6 mo FU Second

HSCT (8)

ARVI Yes

(grade II)

Alive (off Ig)

15 2007 BM MSD RIC (Flu/Mel/

alemtuzumab)

>12 mo

FU (6 y)�
None ADV,

Cryptosporidium

species

No Alive (on IVIG)

33 2009 PBSC MUD NMA (Flu/ATG) 12 mo FU� Second

HSCT (15.4)§

HHV6,

Cryptosporidium

species

No Alive (on IVIG)

37 1996 BM (positive

selection of

CD341 cells)

MUD MAC (Bu/Cy/

aLFA1-2)

6 mo FU None No No Alive (on IVIG)

41 2001 PBSC (positive

selection of

CD341 cells)

MMFD

(haplo)

MAC (Bu/Cy/ATG) 6 mo FU None Whipworm No Deceased

49a 2001 BM (positive

selection of

CD341 cells)

MUD MAC (Bu/Cy/ATG) 6 mo FU Second

HSCT (12.5)

HHV6, ADV

CVL infection

No Alive (off Ig)

74 2014 BM MUD MAC low tox

(Treo/Flu/

Alemtuzumab)

19 mo FU� Second

HSCT (21.4)

CMV, parainfluenza

URTI

No Alive (on IVIG)

77 2004 PBSC MMUD MAC low tox

(Treo/Flu/ATG)

6 mo FU Second

HSCT (10.9)

Third

HSCT (31.1)

CMV reactivation

Clostridium difficile

No Alive (off Ig)

83 2001 BM MMUD RIC (Flu/Mel/ATG) 12 mo FU None EBV,

Cryptosporidium

species

BK virus

Yes

(grade I)

Deceased

85 2003 BM MSD RIC (Flu/Mel/

alemtuzumab)

6 mo FU Second

HSCT (21.1)

No No Alive (off Ig)

86 2006 PBSC MUD� NMA (Flu/Cy/

alemtuzumab 1
anti-CD45)

6 mo FU None Mycobacteria (gut) No Deceased

89 2011 PBSC MUD RIC (Flu/Mel/

alemtuzumab)

>12 mo

FU (3 y)

None ADV No Alive (on SCIG)

98 2007 UCB MMUD MAC (Bu/Cy/ATG) <1 mo FU Second

HSCT (1.3)

CMV No Alive (off Ig)

102 1997 BM (T-cell

depleted)

MUD MAC (Bu-Cy-ATG 1
in vivo LFA1 CD2)

<1 mo FU Cell boost (1.1) Aspergillus species,

Gram - sepsis

No Deceased

107 2011 PBSC MUD� RIC (Flu/Mel/

alemtuzumab)

<3 mo FU Second

HSCT (3.3)

NA NA Alive (off Ig)

124 2014 PBSC (CD45RA

depleted)

MMUD RIC (Bu/Flu/TT/ATG) <3 mo FU None ADV, rhinovirus

Cryptosporidium

species

No Deceased

125 2003 UCB MMUD RIC (Bu/Flu/ATG) <2 mo FU Second

HSCT (2)

NA NA Deceased

ADV, Adenovirus; aLFA, anti-lymphocyte function-associated antigen; ATG, antithymocyte globulin; ARVI, acute respiratory viral infection; Bu, busulfan; CMV, cytomegalovirus;

CVL, central venous line; Cy, cyclophosphamide; Flu, fludarabine; Gram -, Gram-negative; HHV6, human herpes virus 6; Ig, immunoglobulins; IVIG, intravenous

immunoglobulins; Mel, Melphalan; NA, not available; RSV, respiratory syncytial virus; SCIG, subcutaneous immunoglobulins; TCR, T-cell receptor; Treo, treosulfan; URTI, upper

respiratory tract infection.

*First 6 months after first HSCT.

�Numbers of HLA loci studied were not specified.

�Chimerism decreasing since 6 months of FU.

§This patient also received 2 liver transplantations, 1 before the first HSCT and 1 after the second HSCT. He also experienced chronic GVHD after the second HSCT.
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including many different centers and spanning over long time
frames, and by unavoidable intrinsic correlations between
variables, such as the choice of conditioning regimen and the
patient’s clinical status. Furthermore, despite the fact that the
total number of patients included in the study is the highest ever
collected for this disease, analyses on patient subgroups were
limited by small sample size, especially when evaluating
different conditioning regimens, donor types, and lineage-
specific donor cell chimerism. This makes it difficult to draw
strong conclusions, especially at the longest FU, but our study
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FIG 4. Engraftment kinetics and T-cell chimerism.A,Donor cell engraftment kinetics represented by the per-

centage of transplantation procedures in which increasing, decreasing, or stable donor cell engraftment

was observed over time 1 or more years after the last procedure. 8One or 8883 patients received DLIs. Data

on unsorted cells, sorted myeloid cells (CD151), B lymphocytes (CD191), and T lymphocytes (CD31) are re-

ported. B, T- and B-cell chimerism at last FU in survivors off immunoglobulin replacement (IG) at 2 or more

years after the last procedure (*). C, T-cell chimerism at last FU, according to the occurrence of viral infec-

tions after HSCT (yes/no).D,Donor T-cell chimerism kinetics over time (increasing/declining/stable), accord-

ing to the occurrence of viral infections after HSCT (yes/no). 888Three patients received DLIs. **Percentage of

transplantations (or subjects) with available data.
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provides a number of novel and interesting findings that should
be further explored in the future.

In spite of these difficulties, a number of important new
observations emerge from this report. First, OS after trans-
plantation is now 80%, although there remain significant
differences between those undergoing transplantation at less
than 10 years of age and those undergoing transplantation when
older, even in more recent years. Linked with this was a superior
survival in those undergoing transplantation within 2 years of the
diagnosis of CD40L deficiency and in those without organ
damage, specifically liver disease. Importantly, in recent years,
transplants fromMSDs andMUDs reached similarly good results
in terms of OS but not EFS, which remained lower with unrelated
or mismatched donors. Most patients who received MAC showed
complete engraftment at last FU, whereas RIC was associated
with absent engraftment. New conditioning regimens, specifically
FIG 3. Donor cell engraftment after first HSCT and after the last procedure. A, Overall donor cell engraft-

ment over time represented by percentages of subjects with complete, partial, or absent engraftment on un-

sorted cells at different time points after the first HSCT (left panel) and after the last procedure (right panel).
*Three patients with full chimerism received DLIs. **Percentage of those with available data. B, Median

lineage-specific donor cell engraftment over time at different time points after the first HSCT (left panels)
and after the last procedure (right panels). Data on unsorted cells, sorted myeloid cells (CD15), T lympho-

cytes (CD3), and B lymphocytes (CD19) are reported. For each median value, interquartile range is plotted,

and the number of subjects for whom data were available at each FU is reported in parentheses.
=

MAC low tox, had superior OS and DFS, but not EFS, as
compared with RIC. This could likely be explained by the
tendency to reach a lower level of myeloid chimerism over time
in patients who received these conditioning regimens, which
might reflect decreased stem cell engraftment.

DFS was more likely with the use of myeloablation. Patients
who ceased immunoglobulins were stable over time, even if
additional procedures (repeat HSCT, boost infusions) were
required to attain this in some cases. Among those with FU of
2 years or greater, median CD40L expression on activated CD41

T cells was 49% in those who stopped immunoglobulin supple-
mentation and 14.5% in those who still needed it. T-lymphocyte
chimerism was complete or predominantly donor in most cured
patients, but unfortunately, a minimum T-cell donor percentage
reliably associated with immunoglobulin independence could
not be retrieved based on available data.
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Deaths were mainly related to transplantation-associated
complications, including graft rejection, although a few were
due to progression of pre-existing neurologic disease. The
rejection rate was 15%, usually occurring early after trans-
plantation, although retransplantation was usually successful.
Among those who rejected their first transplant, only 11.1%
received HSCT fromMSDs, which was in line with the finding of
lower EFS in transplants from other donor types.

A higher percentage of complete donor chimerism (63.2%)was
observed in transplantations in which patients did not experience
viral infection after HSCT. Moreover, viral infection after HSCT
might have influenced T-lymphocyte chimerism kinetics: in the
majority of transplants in which decreasing T-lymphocyte
chimerism was observed (91.7%), viral infections occurred in
early FU, likely favoring the expansion of autologous T
lymphocytes to replenish the niche.

Although we did not compare our results with those in patients
not undergoing transplantation, previous reports have demonstrated
similar survival as ours, although with improved quality of life in
those undergoing HSCT.20 However, from our data, clear trends
emerge. HSCT is curative, but best results continue to be seen in
younger patients, who have the least organ damage and are infec-
tion free. Furthermore, MAC is associated with a better immuno-
logical outcome than RIC regimens, again favoring earlier HSCT.

There is a need for prospective studies directly comparing risks
of HSCT with those of lifelong immunoglobulins and prophy-
laxis. Additionally, advances in gene therapy, and particularly
gene editing, might be attractive as a potential therapeutic
alternative for those for whom HSCT is too risky because of
associated clinical features and poor donor options, particularly
given that infusion of gene-corrected T lymphocytes might be
curative.52

We thank data managers of the different centers for their support in data

collection. We are grateful to all medical and nurse personnel of the

participating clinical and transplant centers for patients’ care. We are indebted

to all the patients and their families for their participation in the study and trust.

Key messages

d HSCT can be curative in patients with CD40L deficiency,
with the best outcome if performed before 10 years of age
and without organ damage, especially sclerosing
cholangitis.

d Superior OS was achieved with matched donors. HSCT
early after diagnosis and use of myeloablative regimens
resulted in greater OS and DFS. EFS resulted improved
with MSDs, MAC, and BM as stem cell source.

d Reduced intensity and nonmyeloablative conditioning
were associated with poor donor cell engraftment.
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