234 research outputs found

    An electronic model for self-assembled hybrid organic/perovskite semiconductors: reverse band edge electronic states ordering and spin-orbit coupling

    Full text link
    Based on density functional theory, the electronic and optical properties of hybrid organic/perovskite crystals are thoroughly investigated. We consider the mono-crystalline 4FPEPI as material model and demonstrate the optical process is governed by three active Bloch states at the {\Gamma} point of the reduced Brillouin zone with a reverse ordering compared to tetrahedrally bonded semiconductors. Giant spin-orbit coupling effects and optical activities are subsequently inferred from symmetry analysis.Comment: 17 pages, 6 figure

    Optical properties of potential-inserted quantum wells in the near infrared and Terahertz ranges

    Full text link
    We propose an engineering of the optical properties of GaAs/AlGaAs quantum wells using AlAs and InAs monolayer insertions. A quantitative study of the effects of the monolayer position and the well thickness on the interband and intersubband transitions, based on the extended-basis sp3d5s* tight-binding model, is presented. The effect of insertion on the interband transitions is compared with existing experimental data. As for intersubband transitions, we show that in a GaAs/AlGaAs quantum well including two AlAs and one InAs insertions, a three level {e1 , e2 , e3 } system where the transition energy e3-e2 is lower and the transition energy e2-e1 larger than the longitudinal optical phonon energy (36 meV) can be engineered together with a e3-e2 transition energy widely tunable through the TeraHertz range

    Spin-orbit coupling in bulk GaAs

    Full text link
    We study the spin-orbit coupling in the whole Brillouin zone for GaAs using both the sp3s∗d5sp^3s^{\ast}d^5 and sp3s∗sp^3s^{\ast} nearest-neighbor tight-binding models. In the Γ\Gamma-valley, the spin splitting obtained is in good agreement with experimental data. We then further explicitly present the coefficients of the spin splitting in GaAs LL and XX valleys. These results are important to the realization of spintronic device and the investigation of spin dynamics far away from equilibrium.Comment: 8 pages, 3 figures, Physica E, in pres

    Non-linear electro-elastic coupling in non-centrosymmetric materials

    No full text
    International audienceWe propose an extended symmetry-based thermodynamical model of third-order electro-elastic coupling. The entanglement of electrostriction non-linear piezoelectricity and other non-linear phenomena, is studied in details at the same level of theory. Symmetry properties of materials and nanostructures are taken into account. Density Functional Theory (DFT) is used to calculate the complete set of linear and non-linear coefficients. Electrostriction dominates for nitride compounds in the WĂŒrtzite structure, but non-linear elasticity and piezoelectricity must be taken into account for strain and electric field evaluation

    Atomistic calculations of Ga(NAsP)/GaP(N) quantum wells on silicon substrate: Band structure and optical gain

    No full text
    International audienceBand structure calculations of strained Ga(NAsP) quantum wells are performed within the framework of the extended-basis sp3d5s* tight-binding model. The nitrogen contribution is taken into account by introducing an additional sN orbital into the tight-binding basis. Biaxial strain effects on the band alignment of bulk Ga(NAsP) is studied for the ultra-diluted regime. We demonstrate a good agreement with experimental data both for transition energies and optical gain in Ga(NAsP) quantum wells. The effect of N incorporation in the laser active areas is simulated

    Intrinsic interface states in InAs-AlSb heterostructures

    Full text link
    We examine the possibility of intrinsic interface states bound to the plane of In-Sb chemical bonds at InAs/AlSb interfaces. Careful parameterization of the bulk materials in the frame of the extended basis spds^* tight-binding model and recent progress in predictions of band offsets severely limit the span of tight-binding parameters describing this system. We find that a heavy-hole like interface state bound to the plane of In-Sb bonds exists for a large range of values of the InSb/InAs band offset

    Vibrational properties of 2H-PbI2 semiconductors studied via Density Functional Theory calculations

    No full text
    International audienceDensity Functional Theory is used to study the vibrational properties of 2H-PbI2 semiconductor. The Born charge tensors are determined. Calculated phonon frequencies at the Brillouin zone center are compared to Raman scattering and IR absorption measurements. The computed Raman spectra show a good agreement with available experimental data. The simulated phonon dispersion curves are compared with triple-axis neutron scattering measurements

    First-principles density functional theory study of strained wurtzite InP and InAs

    No full text
    International audienceWe report on semilocal and hybrid density functional theory study of strained wurtzite crystals of InAs and InP. The crystal-field splitting has a large and nonlinear dependence on strain for both crystals. Moreover, the study of the electronic deformation potentials reveals that the well-known quasi-cubic approximation fails to reproduce the electronic features of the non-ideal c/a ratio. This theoretical study is of crucial importance for the simulation of self-assembled InAs/InP nanowires
    • 

    corecore