23 research outputs found

    Mutations in the HvDWARF, HvCPD and HvBRI1 Genes-Involved in Brassinosteroid Biosynthesis/Signalling : Altered Photosynthetic Efficiency, Hormonal Homeostasis and Tolerance to High/Low Temperatures in Barley

    Get PDF
    Brassinosteroids (BR) are steroid phytohormones that are involved in the growth and stress response in plants, but the precise mechanisms of their action are still being discovered. In our study we have used BR-deficient barley mutants 522DK and BW084 (which carry missense mutations in the HvDWARF and HvCPD genes, respectively). We have also used a BR-signalling mutant that harbors missense substitutions in the HvBRI1 gene. Our aim was (1) to find out if the content of phytohormones in the mutants grown at 20 °C is different than in the wild types and whether/how the content of phytohormones changes after plant acclimation at temperatures of 5 °C and 27 °C?, (2) to characterise the effectiveness of the light reactions of photosynthesis of the barley mutants in comparison to wild types at various temperatures, and (3) to verify the impact of mutations on the tolerance of barley to high and low temperatures. Hormonal characteristics of the BR mutants of barley show the complexity of the interactions between BR and other plant hormones that are additionally modified by temperature and possibly by other factors. The results suggest the participation of BR in auxin catabolism. Further, BR appears to play a role in maintaining the ABA–ABAGlc balance. As for the gibberellin content in plants at a temperature of 20 °C, more in-depth studies will be required to explain the contradictory effects regarding the accumulation of GA3, GA4 and GA5, which appears to be dependent on the type of mutation and connected to the BR level. A fast-kinetic chlorophyll a fluorescence analysis has revealed that the mutants had lower values of energy absorption than the wild types, but the values of the energy transferred via the electron-transport chain was maintained at the wild-type level. We presumed that BR are involved in regulating plant acclimation to extreme (low/high) temperatures, thus the BR-deficient and BR-signalling mutants should be less tolerant to low/high temperatures when compared to the wild types. Unexpectedly, all of the mutants showed a higher tolerance to high temperatures than the wild types. The BW084 and BW312 mutants were less tolerant to frost than the wild type, but 522DK had a similar frost tolerance as the reference wild-type cultivar

    Transcriptomic analysis of Chinese yam (Dioscorea polystachya Turcz.) variants indicates brassinosteroid involvement in tuber development

    Get PDF
    Dioscorea is an important but underutilized genus of flowering plants that grows predominantly in tropical and subtropical regions. Several species, known as yam, develop large underground tubers and aerial bulbils that are used as food. The Chinese yam (D. polystachya Turcz.) is one of the few Dioscorea species that grows well in temperate regions and has been proposed as a climate-resilient crop to enhance food security in Europe. However, the fragile, club-like tubers are unsuitable for mechanical harvesting, which is facilitated by shorter and thicker storage organs. Brassinosteroids (BRs) play a key role in plant cell division, cell elongation and proliferation, as well as in the gravitropic response. We collected RNA-Seq data from the head, middle and tip of two tuber shape variants: F60 (long, thin) and F2000 (short, thick). Comparative transcriptome analysis of F60 vs. F2000 revealed 30,229 differentially expressed genes (DEGs), 1,393 of which were differentially expressed in the growing tip. Several DEGs are involved in steroid/BR biosynthesis or signaling, or may be regulated by BRs. The quantification of endogenous BRs revealed higher levels of castasterone (CS), 28-norCS, 28-homoCS and brassinolide in F2000 compared to F60 tubers. The highest BR levels were detected in the growing tip, and CS was the most abundant (439.6 ± 196.41 pmol/g in F2000 and 365.6 ± 112.78 pmol/g in F60). Exogenous 24-epi-brassinolide (epi-BL) treatment (20 nM) in an aeroponic system significantly increased the width-to-length ratio (0.045 ± 0.002) compared to the mock-treated plants (0.03 ± 0.002) after 7 weeks, indicating that exogenous epi-BL produces shorter and thicker tubers. In this study we demonstrate the role of BRs in D. polystachya tuber shape, providing insight into the role of plant hormones in yam storage organ development. We found that BRs can influence tuber shape in Chinese yam by regulating the expression of genes involved cell expansion. Our data can help to improve the efficiency of Chinese yam cultivation, which could provide an alternative food source and thus contribute to future food security in Europe

    A reverse-genetics mutational analysis of the barley HvDWARF gene results in identification of a series of alleles and mutants with short stature of various degree and disturbance in BR biosynthesis allowing a new insight into the process

    Get PDF
    Brassinosteroids (BRs) are plant steroid hormones, regulating a broad range of physiological processes. The largest amount of data related with BR biosynthesis has been gathered in Arabidopsis thaliana, however understanding of this process is far less elucidated in monocot crops. Up to now, only four barley genes implicated in BR biosynthesis have been identified. Two of them, HvDWARF and HvBRD, encode BR-6-oxidases catalyzing biosynthesis of castasterone, but their relation is not yet understood. In the present study, the identification of the HvDWARF genomic sequence, its mutational and functional analysis and characterization of new mutants are reported. Various types of mutations located in different positions within functional domains were identified and characterized. Analysis of their impact on phenotype of the mutants was performed. The identified homozygous mutants show reduced height of various degree and disrupted skotomorphogenesis. Mutational analysis of the HvDWARF gene with the “reverse genetics” approach allowed for its detailed functional analysis at the level of protein functional domains. The HvDWARF gene function and mutants’ phenotypes were also validated by measurement of endogenous BR concentration. These results allowed a new insight into the BR biosynthesis in barley

    Local brassinosteroid biosynthesis enables optimal root growth

    Get PDF
    Brassinosteroid hormones are indispensable for root growth and they control both cell division and cell elongation through the establishment of an increasing signaling gradient along the longitudinal root axis. Because of their limited mobility, the importance of brassinosteroid distribution for achieving the signaling maximum is largely overlooked. Expression pattern analysis of all known brassinosteroid biosynthetic enzymes revealed that not all cells in the Arabidopsis thaliana root possess full biosynthetic machinery and completion of biosynthesis relies on cell-to-cell movement of the hormone precursors. We demonstrate that brassinosteroid biosynthesis is largely restricted to the root elongation zone where it overlaps with brassinosteroid signaling maxima. Moreover, optimal root growth requires hormone concentrations, low in the meristem and high in the root elongation zone attributable to an increased biosynthesis. Our finding that spatiotemporal regulation of hormone synthesis results in a local hormone accumulation provides a paradigm for hormone-driven organ growth in the absence of long-distance hormone transport in plants

    Early Brassica crops responses to salinity stress: a comparative analysis between Chinese cabbage, white cabbage and kale

    Get PDF
    Soil salinity is severely affecting crop productivity in many countries, particularly in the Mediterranean area. To evaluate early plant responses to increased salinity and characterize tolerance markers, three important Brassica crops - Chinese cabbage (Brassica rapa ssp. pekinensis), white cabbage (B. oleracea var. capitata) and kale (B. oleracea var. acephala) were subjected to short-term (24 h) salt stress by exposing them to NaCl at concentrations of 50, 100 or 200 mM. Physiological (root growth, photosynthetic performance parameters, and Na+/K+ ratio) and biochemical parameters (proline content, and lipid peroxidation as indicated by malondialdehyde, MDA, levels) in the plants' roots and leaves were then measured. Photosynthetic parameters such as the total performance index PItotal (describing the overall efficiency of PSI, PSII and the intersystem electron transport chain) appeared to be the most salinity-sensitive parameter and informative stress marker. This parameter was decreased more strongly in Chinese cabbage than in white cabbage and kale. It indicated that salinity reduced the capacity of the photosynthetic system for efficient energy conversion, particularly in Chinese cabbage. In parallel with the photosynthetic impairments, the Na+/K+ ratio was highest in Chinese cabbage leaves and lowest in kale leaves while kale root is able to keep high Na+/K+ ratio without a significant increase in MDA. Thus Na+/ K+ ratio, high in root and low in leaves accompanying with low MDA level is an informative marker of salinity tolerance. The crops' tolerance was positively correlated with levels of the stress hormone abscisic acid (ABA) and negatively correlated with levels of jasmonic acid (JA) and jasmonoyl-L-isoleucine (JA-Ile). Furthermore, salinity induced contrasting changes in levels of the growth-promoting hormones brassinosteroids (BRs). The crop’s tolerance was positively correlated with levels of BR precursor typhasterol while negatively with the active BR brassinolide. Principal Component Analysis revealed correlations in observed changes in phytohormones, biochemical and physiological parameters. Overall, the results show that kale is the most tolerant of the three species and Chinese cabbage the most sensitive to salt stress, and provide holistic indications of the spectrum of tolerance mechanisms involved

    Crosstalk between Brassinosteroids and Ethylene during Plant Growth and under Abiotic Stress Conditions

    No full text
    Plant hormones through signaling networks mutually regulate several signaling and metabolic systems essential for both plant development and plant responses to different environmental stresses. Extensive research has enabled the main effects of all known phytohormones classes to be identified. Therefore, it is now possible to investigate the interesting topic of plant hormonal crosstalk more fully. In this review, we focus on the role of brassinosteroids and ethylene during plant growth and development especially flowering, ripening of fruits, apical hook development, and root and shoot growth. As well as it summarizes their interaction during various abiotic stress conditions

    Characterization of Endogenous Levels of Brassinosteroids and Related Genes in Grapevines

    No full text
    Agronomic breeding practices for grapevines (Vitis vinifera L.) include the application of growth regulators in the field. Brassinosteroids (BRs) are a family of sterol-derived plant hormones that regulate several physiological processes and responses to biotic and abiotic stress. In grapevine berries, the production of biologically active BRs, castasterone and 6-deoxocastasterone, has been reported. In this work, key BR genes were identified, and their expression profiles were determined in grapevine. Bioinformatic homology analyses of the Arabidopsis genome found 14 genes associated with biosynthetic, perception and signaling pathways, suggesting a partial conservation of these pathways between the two species. The tissue- and development-specific expression profiles of these genes were determined by qRT-PCR in nine different grapevine tissues. Using UHPLC-MS/MS, 10 different BR compounds were pinpointed and quantified in 20 different tissues, each presenting specific accumulation patterns. Although, in general, the expression profile of the biosynthesis pathway genes of BRs did not directly correlate with the accumulation of metabolites, this could reflect the complexity of the BR biosynthesis pathway and its regulation. The development of this work thus generates a contribution to our knowledge about the presence, and diversity of BRs in grapevines

    Barley brassinosteroid mutants provide an insight into phytohormonal homeostasis in plant reaction to drought stress

    Get PDF
    Brassinosteroids (BRs) are a class of steroid phytohormones, which regulate various processes of morphogenesis and physiology – from seed development to regulation of flowering and senescence. An accumulating body of evidence indicates that BRs take part in regulation of physiological reactions to various stress conditions, including drought. Many of the physiological functions of BRs are regulated by a complicated, and not fully elucidated network of interactions with metabolic pathways of other phytohormones. Therefore, the aim of this study was to characterize phytohormonal homeostasis in barley (Hordeum vulgare) in reaction to drought and validate role of BRs in regulation of this process. Material of this study included the barley cultivar ‘Bowman’ and five Near-Isogenic Lines (NILs) representing characterized semi-dwarf mutants of several genes encoding enzymes participating in BR biosynthesis and signaling. Analysis of endogenous BRs concentrations in these NILs confirmed that their phenotypes result from abnormalities in BR metabolism. In general, concentrations of eighteen compounds, representing various classes of phytohormones, including brassinosteroids, auxins, cytokinins, gibberellins, abscisic acid, salicylic acid and jasmonic acid were analyzed under control and drought conditions in the ‘Bowman’ cultivar and the BR-deficient NILs. Drought induced a significant increase in accumulation of the biologically active form of BRs – castasterone in all analyzed genotypes. Another biologically active form of BRs – 24-epi-brassinolide - was identified in one, BR-insensitive NIL under normal condition, but its accumulation was drought-induced in all analyzed genotypes. Analysis of concentration profiles of several compounds representing gibberellins allowed an insight into the BR-dependent regulation of gibberellin biosynthesis. The concentration of the gibberellic acid GA7 was significantly lower in all NILs when compared with the ‘Bowman’ cultivar, indicating that GA7 biosynthesis represents an enzymatic step at which the stimulating effect of BRs on gibberellin biosynthesis occurs. Moreover, the accumulation of GA7 is significantly induced by drought in all the genotypes. Biosynthesis of jasmonic acid is also a BR-dependent process, as all the NILs accumulated much lower concentrations of this hormone when compared with the ‘Bowman’ cultivar under normal condition, however the accumulation of jasmonic acid, abscisic acid and salicylic acid were significantly stimulated by drought

    Molecular dynamics of chloroplast membranes isolated from wild-type barley and a brassinosteroid-deficient mutant acclimated to low and high temperatures

    Get PDF
    Plants have developed various acclimation strategies in order to counteract the negative effects of abiotic stresses (including temperature stress), and biological membranes are important elements in these strategies. Brassinosteroids (BR) are plant steroid hormones that regulate plant growth and development and modulate their reaction against many environmental stresses including temperature stress, but their role in modifying the properties of the biological membrane is poorly known. In this paper, we characterise the molecular dynamics of chloroplast membranes that had been isolated from wild-type and a BR-deficient barley mutant that had been acclimated to low and high temperatures in order to enrich the knowledge about the role of BR as regulators of the dynamics of the photosynthetic membranes. The molecular dynamics of the membranes was investigated using electron paramagnetic resonance (EPR) spectroscopy in both a hydrophilic and hydrophobic area of the membranes. The content of BR was determined, and other important membrane components that affect their molecular dynamics such as chlorophylls, carotenoids and fatty acids in these membranes were also determined. The chloroplast membranes of the BR-mutant had a higher degree of rigidification than the membranes of the wild type. In the hydrophilic area, the most visible differences were observed in plants that had been grown at 20 C, whereas in the hydrophobic core, they were visible at both 20 and 5 C. There were no differences in the molecular dynamics of the studied membranes in the chloroplast membranes that had been isolated from plants that had been grown at 27 C. The role of BR in regulating the molecular dynamics of the photosynthetic membranes will be discussed against the background of an analysis of the photosynthetic pigments and fatty acid composition in the chloroplasts
    corecore