15 research outputs found

    Feasibility and safety of GliaSite brachytherapy in treatment of CNS tumors following neurosurgical resection

    Get PDF
    Purpose: To investigate feasibility and safety of GliaSite brachytherapy for treatment of central nervous system (CNS) tumors following neurosurgical resection. We report mature results of long-term follow-up, outcomes and toxicity. Materials and Methods: In the period from 2004 to 2007, 10 consecutive adult patients with recurrent, newly diagnosed, and metastatic brain malignancies underwent GliaSite brachytherapy following maximally safe neurosurgical resection. While 6/10 (60%) patients were treated for recurrence, having previously been treated with external beam radiotherapy (EBRT), 4/10 (40%) received radiotherapy (RT) for the first time. A median dose of 52.0 Gy (range, 45.0 - 60.0 Gy) was prescribed to 0.5 cm - 1.0 cm from the balloon surface. Radiation Therapy Oncology Group (RTOG) criteria were used to assess toxicities associated with this technique. Follow-up was assessed with MRI scans and was available on all enrolled patients. Results: Median follow-up was 38 months (range, 18 - 57 months). Mean size of GliaSite balloon was 3.4 cm (range, 2.0 - 4.0 cm). Median survival was 14.0 months for the entire cohort after the treatment. The 17.6 and 16.0 months average survival for newly diagnosed and recurrent high grade gliomas (HGG), respectively, translated into a three-month improvement in survival in patients with newly diagnosed HGG compared to historical controls (P = 0.033). There were no RTOG grades 3 or 4 acute or late toxicities. Follow-up magnetic resonance imaging (MRI) imaging did not identify radiation necrosis. Conclusions: Our data indicate that treatment with GliaSite brachytherapy is feasible, safe and renders acceptable local control, acute and long-term toxicities. We are embarking on testing larger numbers of patients with this treatment modality

    Inclusion Body Myositis: Laser Microdissection Reveals Differential Up-Regulation of IFN-Îł Signaling Cascade in Attacked versus Nonattacked Myofibers

    Get PDF
    Sporadic inclusion body myositis (IBM) is a muscle disease with two separate pathogenic components, degeneration and inflammation. Typically, nonnecrotic myofibers are focally surrounded and invaded by CD8+ T cells and macrophages. Both attacked and nonattacked myofibers express high levels of human leukocyte antigen class I (HLA-I) molecules, a prerequisite for antigen presentation to CD8+ T cells. However, only a subgroup of HLA-I+ myofibers is attacked by immune cells. By using IHC, we classified myofibers from five patients with sporadic IBM as attacked (AIBM) or nonattacked (NIBM) and isolated the intracellular contents of myofibers separately by laser microdissection. For comparison, we isolated myofibers from control persons (HCTRL). The samples were analyzed by microarray hybridization and quantitative PCR. HLA-I up-regulation was observed in AIBM and NIBM, whereas HCTRL were negative for HLA-I. In contrast, the inducible chain of the interferon (IFN) γ receptor (IFNGR2) and several IFN-γ–induced genes were up-regulated in AIBM compared with NIBM and HCTRL fibers. Confocal microscopy confirmed segmental IFNGR2 up-regulation on the membranes of AIBM, which positively correlated with the number of adjacent CD8+ T cells. Thus, the differential up-regulation of the IFN-γ signaling cascade observed in the attacked fibers is related to local inflammation, whereas the ubiquitous HLA-I expression on IBM muscle fibers does not require IFNGR expression

    Assessment of Epidermal Growth Factor Receptor (EGFR) expression in human meningioma

    Get PDF
    <p>Abstract</p> <p>Purpose</p> <p>This study explores whether meningioma expresses epidermal growth factor receptor (EGFR) and determines if there is a correlation between the WHO grade of this tumor and the degree of EGFR expression.</p> <p>Methods</p> <p>Following institutional review board approval, 113 meningioma specimens from 89 patients were chosen. Of these, 85 were used for final analysis. After a blinded review, immunohistochemical stains for EGFR were performed. Staining intensity (SI) was scored on a scale 0-3 (from no staining to strong staining). Staining percentage of immunoreactive cells (SP) was scored 1-5 (from the least to the maximum percent of the specimen staining). Immunohistochemical score (IHS) was calculated as the product of SI and SP.</p> <p>Results</p> <p>Eighty-five samples of meningioma were classified in accordance with World Health Organization (WHO) criteria: benign 57/85 (67%), atypical 23/85 (27%), and malignant 5/85 (6%). The majority of samples demonstrated a moderate SI for EGFR. IHS for EGFR demonstrated a significant association between SI and histopathologic subtype. Also, there was a correlation between the SP and histopathologic subtype (p = 0.029). A significant association was determined when the benign and the atypical samples were compared to the malignant with respect to the SP (p = 0.009). While there was a range of the IHS for the benign and the atypical histologic subtypes, malignant tumors exhibited the lowest score and were statistically different from the benign and the atypical specimens (p < 0.001).</p> <p>Conclusions</p> <p>To our knowledge, this represents the largest series of meningioma samples analyzed for EGFR expression reported in the literature. EGFR expression is greatest in benign meningiomas and may serve a potential target for therapeutic intervention with selective EGFR inhibitors.</p
    corecore