24 research outputs found

    Clinical experience with medical hypnosis as an adjunctive therapy in heart surgery

    Get PDF
    Heart surgery patients are at high risk for psychological trauma and comorbid psychological disorders. Depression, anxiety, and post-traumatic stress disorders in this patient group are predictors of outcomes after cardiac surgery. Medical hypnosis is effective for non-pharmacologic prevention and treatment of psychological disorders and has been associated with improved health-related quality of life and better cardiovascular outcomes. This contribution makes note of evidence of the effectiveness of medical hypnosis in a discussion of the clinical experience with specific hypnotherapeutic tools and interventions from the perspective of the mental health team in one large cardiac center in Germany. Based on our experience, we encourage heart centers to educate their heart surgery care teams about the core concepts of medical hypnosis and to make hypnotherapeutic techniques available as an adjunctive therapy

    Assessing carbon in urban trees: benefits of using high-resolution remote sensing

    Get PDF
    Vorliegende Arbeit zeigt die jüngsten Möglichkeiten hochauflösender Fernerkundung am Beispiel von Stadtbäumen in Berlin, Deutschland. Es wurden neuste methodische Ansätze eingesetzt, wie beispielsweise maschinelles Lernens und individuelle Baumdetektion. Sie erwiesen sich von großem Vorteil für die detaillierte Analyse urbaner Ökosystemdienstleistungen in einer heterogenen Umwelt. Neueste Fernerkundung von hoher zeitlicher Auflösung hat Möglichkeiten gezeigt, Veränderungen des Stadtwaldes präziser zu untersuchen. Diesbezüglich konnten Baumspezies klassifiziert werden auf Grundlage saisonaler Veränderungen, die mittels Fernerkundungsdaten aufgenommen wurden. Dies ist für den urbanen Bereich einmalig und über große Flächen noch nicht durchgeführt worden. Darüber hinaus haben diese Baumarten einzelnen Bäumen zugeordnet werden können, deren Abmessung fernerkundlich erfasst worden ist. Diese neu erzeugten Umweltinformationen einzelner Bäume können damit verbundene urbane Ökosystemdienstleistungen präzise aktualisieren. Zum Beispiel haben so Unsicherheiten in der Schätzung zur Kohlenstoffspeicherung städtischer Wälder reduziert werden können. Es ist zudem von Vorteil gewesen, den gegenwärtigen Mangel an räumlich expliziten dreidimensionalen Informationen über Stadtwälder anzusprechen. Allerdings ist die Rolle städtischen Wälder, das Treibhausgas CO2 langfristig auszugleichen, immer noch wenig untersucht. Gerade der Mangel an präzisen, konsistenten und aktuellen Details führt zu großen Unsicherheiten im Rahmen von Lebenszyklus-Analysen. Auf Grund des aktuellen Fortschritts in hochauflösender Fernerkundung könnten diese Unsicherheiten reduziert werden. Dazu werden Möglichkeiten ausgiebig kritisch bewertet und anhand einer Lebenszyklus-Analyse am Beispiel Berlin andiskutiert, inwieweit sie präzisere langfristige Prognosen zum Stadtwald als Kohlenstoffspeicher liefern.This work shows recent options for implementing high resolution remote sensing in assessing urban trees in Berlin, Germany. State-of-the-art methodological approaches like machine learning and individual tree detection proved to be highly advantageous for analyzing details of urban ecosystem services within a heterogeneous urban environment. Recent remote sensing of high temporal resolution offers new options for more precisely addressing urban forest dynamics. This successfully shows that tree species could be identified from seasonal changes of remotely sensed imagery, though this has not yet been applied across cities. Furthermore, these tree species results could be combined with remotely sensed individual tree dimensions. This newly generated data can be suggested to update spatially explicit information on related urban ecosystem services. For example, this could reduce the uncertainties of such estimates as urban forest carbon storage, and also address the present lack of spatially explicit three-dimensional information on urban forests. However, few studies have considered the local scale of urban forests to effectively evaluate their potential long-term carbon offset. The lack of precise, consistent and up-to-date forest details is challenging within the scope of life cycle assessments. This can cause high uncertainties in urban forest carbon offset. Although, recent progress in high resolution remote sensing is promising to reduce these uncertainties. For this purpose, remote sensing options are extensively reviewed and briefly discussed using an example of life cycle assessment for Berlin, which allow more precise long-term prognoses of urban forest carbon offset

    High resolution remote sensing for reducing uncertainties in urban forest carbon offset life cycle assessments

    No full text
    Abstract Background Urban forests reduce greenhouse gas emissions by storing and sequestering considerable amounts of carbon. However, few studies have considered the local scale of urban forests to effectively evaluate their potential long-term carbon offset. The lack of precise, consistent and up-to-date forest details is challenging for long-term prognoses. Therefore, this review aims to identify uncertainties in urban forest carbon offset assessment and discuss the extent to which such uncertainties can be reduced by recent progress in high resolution remote sensing. We do this by performing an extensive literature review and a case study combining remote sensing and life cycle assessment of urban forest carbon offset in Berlin, Germany. Main text Recent progress in high resolution remote sensing and methods is adequate for delivering more precise details on the urban tree canopy, individual tree metrics, species, and age structures compared to conventional land use/cover class approaches. These area-wide consistent details can update life cycle inventories for more precise future prognoses. Additional improvements in classification accuracy can be achieved by a higher number of features derived from remote sensing data of increasing resolution, but first studies on this subject indicated that a smart selection of features already provides sufficient data that avoids redundancies and enables more efficient data processing. Our case study from Berlin could use remotely sensed individual tree species as consistent inventory of a life cycle assessment. However, a lack of growth, mortality and planting data forced us to make assumptions, therefore creating uncertainty in the long-term prognoses. Regarding temporal changes and reliable long-term estimates, more attention is required to detect changes of gradual growth, pruning and abrupt changes in tree planting and mortality. As such, precise long-term urban ecological monitoring using high resolution remote sensing should be intensified, especially due to increasing climate change effects. This is important for calibrating and validating recent prognoses of urban forest carbon offset, which have so far scarcely addressed longer timeframes. Additionally, higher resolution remote sensing of urban forest carbon estimates can improve upscaling approaches, which should be extended to reach a more precise global estimate for the first time. Conclusions Urban forest carbon offset can be made more relevant by making more standardized assessments available for science and professional practitioners, and the increasing availability of high resolution remote sensing data and the progress in data processing allows for precisely that

    Using Airborne LiDAR and QuickBird Data for Modelling Urban Tree Carbon Storage and Its Distribution—A Case Study of Berlin

    No full text
    While CO2 emissions of cities are widely discussed, carbon storage in urban vegetation has been rarely empirically analyzed. Remotely sensed data offer considerable benefits for addressing this lack of information. The aim of this paper is to develop and apply an approach that combines airborne LiDAR and QuickBird to assess the carbon stored in urban trees of Berlin, Germany, and to identify differences between urban structure types. For a transect in the city, dendrometric parameters were first derived to estimate individual tree stem diameter and carbon storage with allometric equations. Field survey data were used for validation. Then, the individual tree carbon storage was aggregated at the level of urban structure types and the distribution of carbon storage was analysed. Finally, the results were extrapolated to the entire urban area. High accuracies of the detected tree locations were reached with 65.30% for all trees and 80.1% for dominant trees. The total carbon storage of the study area was 20,964.40 t (σ = 15,550.11 t). Its carbon density equaled 13.70 t/ha. A general center-to-periphery increase in carbon storage was identified along the transect. Our approach methods can be used by scientists and decision-makers to gain an empirical basis for the comparison of carbon storage capacities between cities and their subunits to develop adaption and mitigation strategies against climate change

    Dyrk1A Potentiates Steroid Hormone-Induced Transcription via the Chromatin Remodeling Factor Arip4

    No full text
    Dyrk1A, a mammalian homolog of the Drosophila minibrain gene, encodes a dual-specificity kinase, involved in neuronal development and in adult brain physiology. In humans, a third copy of DYRK1A is present in Down syndrome (trisomy 21) and has been implicated in the etiology of mental retardation. To further understand this pathology, we searched for Dyrk1A-interacting proteins and identified Arip4 (androgen receptor-interacting protein 4), a SNF2-like steroid hormone receptor cofactor. Mouse hippocampal and cerebellar neurons coexpress Dyrk1A and Arip4. In HEK293 cells and hippocampal neurons, both proteins are colocalized in a speckle-like nuclear subcompartment. The functional interaction of Dyrk1A with Arip4 was analyzed in a series of transactivation assays. Either Dyrk1A or Arip4 alone displays an activating effect on androgen receptor- and glucocorticoid receptor-mediated transactivation, and Dyrk1A and Arip4 together act synergistically. These effects are independent of the kinase activity of Dyrk1A. Inhibition of endogenous Dyrk1A and Arip4 expression by RNA interference showed that both proteins are necessary for the efficient activation of androgen receptor- and glucocorticoid receptor-dependent transcription. As Dyrk1A is an activator of steroid hormone-regulated transcription, the overexpression of DYRK1A in persons with Down syndrome may cause rather broad changes in the homeostasis of steroid hormone-controlled cellular events

    Clinical experience with medical hypnosis as an adjunctive therapy in heart surgery

    No full text
    Heart surgery patients are at high risk for psychological trauma and comorbid psychological disorders. Depression, anxiety, and post-traumatic stress disorders in this patient group are predictors of outcomes after cardiac surgery. Medical hypnosis is effective for non-pharmacologic prevention and treatment of psychological disorders and has been associated with improved health-related quality of life and better cardiovascular outcomes. This contribution makes note of evidence of the effectiveness of medical hypnosis in a discussion of the clinical experience with specific hypnotherapeutic tools and interventions from the perspective of the mental health team in one large cardiac center in Germany. Based on our experience, we encourage heart centers to educate their heart surgery care teams about the core concepts of medical hypnosis and to make hypnotherapeutic techniques available as an adjunctive therapy

    ECMO support during the first two waves of the corona pandemic-a survey of high case volume centers in Germany

    No full text
    Background At the onset of the coronavirus pandemic, concerns were raised about sufficiency of available intensive care resources. In many places, routine interventions were postponed and criteria for the allocation of scarce resources were formulated. In Germany, some hospitals were at times seriously burdened during the course of the pandemic. Intensive care units in particular experienced a shortage of resources, which may have led to a restriction of services and a stricter indication setting for resource-intensive measures such as extracorporeal membrane oxygenation (ECMO). The aim of this work is to provide an overview of how these pressures were managed at large ECMO centers in Germany. Methods One representative of each major ECMO referral center in Germany was invited to participate in an online survey in spring 2021. Results Of 34 invitations that were sent out, the survey was answered by 23 participants. In all centers, routine procedures were postponed during the pandemic. Half of the centers increased the number of beds on which ECMO procedures could be offered. Nevertheless, in one-third of the centers, the start of at least one ECMO support was delayed because of a feared resource shortage. In 17% of centers, at least one patient was denied ECMO that he or she would have most likely received under prepandemic conditions. Conclusion The results of this online survey indicate that the experienced pressures and resource constraints led some centers to be cautious about ECMO indications

    Local Tumor Treatment in Combination with Systemic Ipilimumab Immunotherapy Prolongs Overall Survival in Patients with Advanced Malignant Melanoma

    No full text
    Immune checkpoint inhibition with ipilimumab has revolutionized cancer immunotherapy and significantly improved outcomes of patients with advanced malignant melanoma. Local peripheral treatments (LPT), such as radiotherapy or electrochemotherapy, have been shown to modulate systemic immune responses, and preliminary data have raised the hypothesis that the combination of LPT with systemic immune checkpoint blockade might be beneficial. Clinical data from 127 consecutively treated melanoma patients at four cancer centers in Germany and Switzerland were analyzed. Patients received either ipilimumab (n = 82) or ipilimumab and additional LPT (n = 45) if indicated for local tumor control. The addition of LPT to ipilimumab significantly prolonged overall survival (OS; median OS 93 vs. 42 weeks, unadjusted HR, 0.46; P = 0.0028). Adverse immune-related events were not increased by the combination treatment, and LPT-induced local toxicities were in most cases mild. In a multivariable Cox regression analysis, we show that the effect of added LPT on OS remained statistically significant after adjusting for BRAF status, tumor stage, tumor burden, and central nervous system metastases (adjusted HR, 0.56; 95% confidence interval, 0.31-1.01, P = 0.05). Our data suggest that the addition of LPT to ipilimumab is safe and effective in patients with metastatic melanoma irrespective of clinical disease characteristics and known risk factors. Induction of antitumor immune responses is most likely the underlying mechanism and warrants prospective validation. (C) 2016 AACR
    corecore