48 research outputs found

    Riverine Ecosystem Management: Science for Governing Towards a Sustainable Future

    Get PDF
    This open access book surveys the frontier of scientific river research and provides examples to guide management towards a sustainable future of riverine ecosystems. Principal structures and functions of the biogeosphere of rivers are explained; key threats are identified, and effective solutions for restoration and mitigation are provided. Rivers are among the most threatened ecosystems of the world. They increasingly suffer from pollution, water abstraction, river channelisation and damming. Fundamental knowledge of ecosystem structure and function is necessary to understand how human acitivities interfere with natural processes and which interventions are feasible to rectify this. Modern water legislation strives for sustainable water resource management and protection of important habitats and species. However, decision makers would benefit from more profound understanding of ecosystem degradation processes and of innovative methodologies and tools for efficient mitigation and restoration. The book provides best-practice examples of sustainable river management from on-site studies, European-wide analyses and case studies from other parts of the world. This book will be of interest to researchers in the field of aquatic ecology, river system functioning, conservation and restoration, to postgraduate students, to institutions involved in water management, and to water related industries

    Satellite Eyes and Chemical Noses

    Get PDF
    Abstract not availabl

    Resilience and alternative stable states of tropical forest landscapes under shifting cultivation regimes

    Get PDF
    Shifting cultivation is a traditional agricultural practice in most tropical regions of the world and has the potential to provide for human livelihoods while hosting substantial biodiversity. Little is known about the resilience of shifting cultivation to increasing agricultural demands on the landscape or to unexpected disturbances. To investigate these issues, we develop a simple social-ecolgical model and implement it with literature-derived ecological parameters for six shifting cultivation landscapes from three continents. Analyzing the model with the tools of dynamical systems analysis, we show that such landscapes exhibit two stable states, one characterized by high forest cover and agricultural productivity, and another with much lower values of these traits. For some combinations of agricultural pressure and ecological parameters both of these states can potentially exist, and the actual state of the forest depends critically on its historic state. In many cases, the landscapes' 'ecological resilience', or amount of forest that could be destroyed without shifting out of the forested stability domain, declined substantially at lower levels of agricultural pressure than would lead to maximum productiviy. A measure of 'engineering resilience',- the recovery time from standardized disturbances, was independent of ecological resilience. These findings suggest that maximization of short-term agricultural output may have counterproductive impacts on the long-term productivity of shifting cultivation landscapes and the persistence of forested areas

    Assessing Vulnerability to Climate Change in Dryland Livelihood Systems:Conceptual Challenges and Interdisciplinary Solutions

    Get PDF
    Over 40% of the earth's land surface are drylands that are home to approximately 2.5 billion people. Livelihood sustainability in drylands is threatened by a complex and interrelated range of social, economic, political, and environmental changes that present significant challenges to researchers, policy makers, and, above all, rural land users. Dynamic ecological and environmental change models suggest that climate change induced drought events may push dryland systems to cross biophysical thresholds, causing a long-term drop in agricultural productivity. Therefore, research is needed to explore how development strategies and other socioeconomic changes help livelihoods become more resilient and robust at a time of growing climatic risk and uncertainty. As a result, the overarching goal of this special feature is to conduct a structured comparison of how livelihood systems in different dryland regions are affected by drought, thereby making methodological, empirical, and theoretical contributions to our understanding of how these types of social-ecological systems may be vulnerable to climate change. In introducing these issues, the purpose of this editorial is to provide an overview of the two main intellectual challenges of this work, namely: (1) how to conceptualize vulnerability to climate change in coupled social-ecological systems; and (2) the methodological challenges of anticipating trends in vulnerability in dynamic environments.</p

    Biological invasions, ecological resilience and adaptive governance

    Get PDF
    In a world of increasing interconnections in global trade as well as rapid change in climate and land cover, the accelerating introduction and spread of invasive species is a critical concern due to associated negative social and ecological impacts, both real and perceived. Much of the societal response to invasive species to date has been associated with negative economic consequences of invasions. This response has shaped a war-like approach to addressing invasions, one with an agenda of eradications and intense ecological restoration efforts towards prior or more desirable ecological regimes. This trajectory often ignores the concept of ecological resilience and associated approaches of resilience-based governance. We argue that the relationship between ecological resilience and invasive species has been understudied to the detriment of attempts to govern invasions, and that most management actions fail, primarily because they do not incorporate adaptive, learning-based approaches. Invasive species can decrease resilience by reducing the biodiversity that underpins ecological functions and processes, making ecosystems more prone to regime shifts. However, invasions do not always result in a shift to an alternative regime; invasions can also increase resilience by introducing novelty, replacing lost ecological functions or adding redundancy that strengthens already existing structures and processes in an ecosystem. This paper examines the potential impacts of species invasions on the resilience of ecosystems and suggests that resilience-based approaches can inform policy by linking the governance of biological invasions to the negotiation of tradeoffs between ecosystem services

    Where There's Smoke

    No full text

    Predictions and retrodictions of the hierarchical representation of habitat in heterogeneous environments

    Get PDF
    Interaction between habitat and species is central in ecology. Habitat structure may be conceived as being hierarchical, where larger, more diverse, portions or categories contain smaller, more homogeneous portions. When this conceptualization is combined with the observation that species have different abilities to relate to portions of the habitat that differ in their characteristics, a number of known patterns can be derived and new patterns hypothesized. We propose a quantitative form of this habitat–species relationship by considering species abundance to be a function of habitat specialization, habitat fragmentation, amount of habitat, and adult body mass. The model reproduces and explains patterns such as variation in rank–abundance curves, greater variation and extinction probabilities of habitat specialists, discontinuities in traits (abundance, ecological range, pattern of variation, body size) among species sharing a community or area, and triangular distribution of body sizes, among others. The model has affinities to Holling’s textural discontinuity hypothesis and metacommunity theory but differs from both by offering a more general perspective. In support of the model, we illustrate its general potential to capture and explain several empirical observations that historically have been treated independently

    Conceptual Modeling for Adaptive Environmental Assessment and Management in the Barycz Valley, Lower Silesia, Poland

    No full text
    The complexity of interactions in socio-ecological systems makes it very difficult to plan and implement policies successfully. Traditional environmental management and assessment techniques produce unsatisfactory results because they often ignore facets of system structure that underlie complexity: delays, feedbacks, and non-linearities. Assuming that causes are linked in a linear chain, they concentrate on technological developments (“hard path”) as the only solutions to environmental problems. Adaptive Management is recognized as a promising alternative approach directly addressing links between social and ecological systems and involving stakeholders in the analysis and decision process. This “soft path” requires special tools to facilitate collaboration between “experts” and stakeholders in analyzing complex situations and prioritizing policies and actions. We have applied conceptual modeling to increase communication, understanding and commitment in the project of seven NGOs “Sustainable Regional Development in the Odra Catchment”. The main goal was to help our NGO partners to facilitate their efforts related to developing sustainable policies and practices to respond to large-scale challenges (EU accession, global changes in climate and economy) to their natural, economic and socio-cultural heritages. Among the variety of sustainability issues explored by these NGOs, two (extensive agricultural practices and “green” local products) were examined by using Adaptive Management (AM) as a framework that would link analysis, discussion, research, actions and monitoring. Within the AM framework the project coordinators used tools of systems analysis (Mental Model Mapping) to facilitate discussions in which NGO professionals and local stakeholders could graphically diagram and study their understanding of what factors interacted and how they affect the region’s sustainability. These discussions produced larger-scale Regional Sustainability Models as well as more detailed sub-models of particular factors, processes, and feedback loops that appear critical to a sustainable future. The Regional Sustainability Model was used to identify a subset of key interacting factors (variables). For each variable, several sustainability indicators were suggested. The growing understanding and acceptance of the AM framework and systems analysis created a momentum both locally and within the region, which makes continued successful use of these indicators quite likely. In contrast to expert-driven projects that inject outside knowledge into a local context, this project established a broad basis for stakeholder-driven discussion that is articulated into goals, objectives, conceptual models, and indicators. The ability to learn and adapt in the AM framework increases the capacity to innovate and find policies and practices that enhance resilience and sustainability in a world in transition
    corecore