15,163 research outputs found

    Topology Classes of Flat U(1) Bundles and Diffeomorphic Covariant Representations of the Heisenberg Algebra

    Get PDF
    The general construction of self-adjoint configuration space representations of the Heisenberg algebra over an arbitrary manifold is considered. All such inequivalent representations are parametrised in terms of the topology classes of flat U(1) bundles over the configuration space manifold. In the case of Riemannian manifolds, these representations are also manifestly diffeomorphic covariant. The general discussion, illustrated by some simple examples in non relativistic quantum mechanics, is of particular relevance to systems whose configuration space is parametrised by curvilinear coordinates or is not simply connected, which thus include for instance the modular spaces of theories of non abelian gauge fields and gravity.Comment: 22 pages, no figures, plain LaTeX file; changes only in details of affiliation and financial suppor

    N‐heterocyclic carbene catalyzed photoenolization/Diels–Alder reaction of acid fluorides

    Get PDF
    The combination of light activation and N‐heterocyclic carbene (NHC) organocatalysis has enabled the use of acid fluorides as substrates in a UVA‐light‐mediated photochemical transformation previously observed only with aromatic aldehydes and ketones. Stoichiometric studies and TD‐DFT calculations support a mechanism involving the photoactivation of an ortho‐toluoyl azolium intermediate, which exhibits “ketone‐like” photochemical reactivity under UVA irradiation. Using this photo‐NHC catalysis approach, a novel photoenolization/Diels–Alder (PEDA) process was developed that leads to diverse isochroman‐1‐one derivatives

    The 1/N-expansion, quantum-classical correspondence and nonclassical states generation in dissipative higher-order anharmonic oscillators

    Full text link
    We develop a method for the determination of thecdynamics of dissipative quantum systems in the limit of large number of quanta N, based on the 1/N-expansion of Heidmann et al. [ Opt. Commun. 54, 189 (1985) ] and the quantum-classical correspondence. Using this method, we find analytically the dynamics of nonclassical states generation in the higher-order anharmonic dissipative oscillators for an arbitrary temperature of a reservoir. We show that the quantum correction to the classical motion increases with time quadratically up to some maximal value, which is dependent on the degree of nonlinearity and a damping constant, and then it decreases. Similarities and differences with the corresponding behavior of the quantum corrections to the classical motion in the Hamiltonian chaotic systems are discussed. We also compare our results obtained for some limiting cases with the results obtained by using other semiclassical tools and discuss the conditions for validity of our approach.Comment: 15 pages, RevTEX (EPSF-style), 3 figs. Replaced with final version (stylistic corrections

    Dynamical Phase Transitions In Driven Integrate-And-Fire Neurons

    Full text link
    We explore the dynamics of an integrate-and-fire neuron with an oscillatory stimulus. The frustration due to the competition between the neuron's natural firing period and that of the oscillatory rhythm, leads to a rich structure of asymptotic phase locking patterns and ordering dynamics. The phase transitions between these states can be classified as either tangent or discontinuous bifurcations, each with its own characteristic scaling laws. The discontinuous bifurcations exhibit a new kind of phase transition that may be viewed as intermediate between continuous and first order, while tangent bifurcations behave like continuous transitions with a diverging coherence scale.Comment: 4 pages, 5 figure

    Cellular Classes in the Human Brain Revealed In Vivo by Heartbeat-Related Modulation of the Extracellular Action Potential Waveform

    Get PDF
    Determining cell types is critical for understanding neural circuits but remains elusive in the living human brain. Current approaches discriminate units into putative cell classes using features of the extracellular action potential (EAP); in absence of ground truth data, this remains a problematic procedure. We find that EAPs in deep structures of the brain exhibit robust and systematic variability during the cardiac cycle. These cardiac-related features refine neural classification. We use these features to link bio-realistic models generated from in vitro human whole-cell recordings of morphologically classified neurons to in vivo recordings. We differentiate aspiny inhibitory and spiny excitatory human hippocampal neurons and, in a second stage, demonstrate that cardiac-motion features reveal two types of spiny neurons with distinct intrinsic electrophysiological properties and phase-locking characteristics to endogenous oscillations. This multi-modal approach markedly improves cell classification in humans, offers interpretable cell classes, and is applicable to other brain areas and species

    Influence of substrate bias on the structural and dielectrical properties of magnetron-sputtered BaxSr1-xTiO3 thin films

    Full text link
    The application of a substrate bias during rf magnetron sputtering alters the crystalline structure, grain morphology, lattice strain and composition of BaxSr1-xTiO3 thin films. As a result, the dielectric properties of Pt/BaxSr1-xTiO3/Pt parallel-plate capacitors change significantly. With increasing substrate bias we observe a clear shift of the ferroelectric to paraelectric phase transition towards higher temperature, an increase of the dielectric permittivity and tunability at room temperature, and a deterioration of the dielectric loss. To a large extent these changes correlate to a gradual increase of the tensile in-plane film strain with substrate bias and an abrupt change in film composition.Comment: 24 pages, 8 figures, submitted to Ferroelectric

    Influence of Noise on Force Measurements

    Full text link
    We demonstrate how the ineluctable presence of thermal noise alters the measurement of forces acting on microscopic and nanoscopic objects. We quantify this effect exemplarily for a Brownian particle near a wall subjected to gravitational and electrostatic forces. Our results demonstrate that the force measurement process is prone to artifacts if the noise is not correctly taken into account.Comment: 4 Pages, 4 Figures, Accepte

    Finite temperature properties of the triangular lattice t-J model, applications to Nax_xCoO2_2

    Full text link
    We present a finite temperature (TT) study of the t-J model on the two-dimensional triangular lattice for the negative hopping tt, as relevant for the electron-doped Nax_xCoO2_2 (NCO). To understand several aspects of this system, we study the TT-dependent chemical potential, specific heat, magnetic susceptibility, and the dynamic Hall-coefficient across the entire doping range. We show systematically, how this simplest model for strongly correlated electrons describes a crossover as function of doping (xx) from a Pauli-like weakly spin-correlated metal close to the band-limit (density n=2n=2) to the Curie-Weiss metallic phase (1.5<n<1.751.5<n<1.75) with pronounced anti-ferromagnetic (AFM) correlations at low temperatures and Curie-Weiss type behavior in the high-temperature regime. Upon further reduction of the doping, a new energy scale, dominated by spin-interactions (JJ) emerges (apparent both in specific heat and susceptibility) and we identify an effective interaction Jeff(x)J_{eff}(x), valid across the entire doping range. This is distinct from Anderson's formula, as we choose here t<0t<0, hence the opposite sign of the usual Nagaoka-ferromagnetic situation. This expression includes the subtle effect of weak kinetic AFM - as encountered in the infinitely correlated situation (U=∞U=\infty). By explicit computation of the Kubo-formulae, we address the question of practical relevance of the high-frequency expression for the Hall coefficient RH∗R_H^*. We hope to clarify some open questions concerning the applicability of the t-J model to real experimental situations through this study

    Effective band-structure in the insulating phase versus strong dynamical correlations in metallic VO2

    Full text link
    Using a general analytical continuation scheme for cluster dynamical mean field calculations, we analyze real-frequency self-energies, momentum-resolved spectral functions, and one-particle excitations of the metallic and insulating phases of VO2. While for the former dynamical correlations and lifetime effects prevent a description in terms of quasi-particles, the excitations of the latter allow for an effective band-structure. We construct an orbital-dependent, but static one-particle potential that reproduces the full many-body spectrum. Yet, the ground state is well beyond a static one-particle description. The emerging picture gives a non-trivial answer to the decade-old question of the nature of the insulator, which we characterize as a ``many-body Peierls'' state.Comment: 5 pages, 4 color figure
    • 

    corecore